求解一道高考數學題!!有答案有過程!!但是不懂,求加解題步驟

時間 2021-08-16 01:53:33

1樓:匿名使用者

這是我在草紙上寫的步驟,字寫的太草了,將就著看吧~你看看答案對不對,但是方法應該對。

明天我也高考,祝你考出好成績!

如果我有哪個地方寫錯了或者不懂得話繼續追問~

2樓:匿名使用者

1. b/a=根號2/2

c=根號3,

a^2+b^2=c^2 解得雙曲線方程 x^2/2-y^2=12. 過原點o作l垂線,兩直線間距離為d

|k|=d/根號(ao^2-d^2)=根號6/根號(18-6)=根號2/2

所以k=根號2/2或-根號2/2

希望及時採納~

3樓:無力↑仰望

給你點個思路吧 雙曲線的方程就用標準方程一目瞭然地寫出來。

其實這個題的思想很簡單。第二問先寫出直線方程後,用平行直線的距離公式建立一個方程,解這個方程就得出答案。

現在沒時間幫你一個個公式寫出來,如果明天還沒人做出來的話我來寫個詳細的好了……

4樓:匿名使用者

手打的累死我了,求各位大蝦儘快解答 同這個故事 你看一下吧三個人去再加上服務生留的3.5元,變成了32元 哈哈,不但沒少,還多了二元呢!!

緊急求助!!!!!!跪求數學達人詳細解釋一道選擇題的答案(解題過程),辛苦了!!!

5樓:匿名使用者

①x≥0時,f(x)=x-[x]可以看出函式值域為[0,1)另外還能看出f(x)為周期函式:

f(0)=f(1)=f(2)=……= 0

f(0.1)=f(1.1)=f(2.

1)=……= 0.1f(0.2)=f(1.

2)=f(2.2)=……= 0.2··f(0.

9)=f(1.9)=f(2.9)=……= 0.

9∴f(x)在[1,2)、[2,3)、[3,4)、[4,5)……處的影象時由[0,1)處的影象平移過去的(週期為1)

而當0≤x<1時,[x]=0,f(x)=x②當x<0時,f(x)=f(x+1) (其實這個式子就能表示x<0時,週期為1了)

在把[-1,0)上的影象畫出來

x∈[-1,0),則x+1∈[0,1)

而f(x)=f(x+1)

∴f(x)在[-1,0)處的影象還是由[0,1)處的影象平移過去的。

具體影象在這裡:

直線y=k(x+1)恆過(-1,0)這一點,除這一點外只能有兩個交點了。

看圖一目瞭然。

①的斜率為1/4,②的斜率為1/3

圖在這:

6樓:爽朗的歲月

f(x)=x-[x]也就是f(x)=y(y為x小數部分)([x]表示不超過x的最大整數,在x≥0時就是x的整數部分,所以在x≥0是f(x)=y(y為x小數部分))也就是x=0時y=0,x=1時y=1 (當然這個點取不到)連下線就是影象了x=1時y=0,x=2時y=1 (當然這個點取不到)......依次類推,當x<0時,f(x)=f(x+1)就是x的函式值與x+1的一樣在x<0時,也就是要+到x>=0時才知道函式值,也就是當x小於0時,f(x)=-x-[-x],...悲劇啊, 我高二的,語文水平很差,0.

0,講不清了,告訴你4個點是4個極端的點,(-3,1)k=-0.5 。(-2,1)k=-1.

(-1,-0.5](捨去)(2,1)k=1/3 。(3,1)k=0.

25 .[1/4,1/3)

7樓:語錄

先畫圖 其圖形是週期性的 在[0,1)區域內就是y=x,然後[1,2)就是y=x-1,相當於向右平移一個單位,在整個r區域都有此規律。所給直線過定點(-1,0),然後觀察圖形。。當x<0時,f(x)=f(x+1)就是一個以1為週期的函式,只要畫出(-1,0)區域內的直線即可推出其右的圖形,而(-1,0)區域與(1,0)區域的值域相同。

總之學數學一定要注意數形結合。

8樓:serena沫沫

先森,你的題發的很含糊~~~- -! 你檢查下是不是那裡錯了

9樓:韋根英

選擇題,所以用特殊的方法,x≥0時,(x)=x-[x],都是在[0,1)區間中,影象是y=x影象,只不過是在區間(0,1)上的,然後通過平移一個單位1就是了。當x小於0時,帶入幾個特殊值,就可以發現,影象和之前的很類似,只不過是影象向左平移一個單位。你畫畫圖就能理解了

如圖求解一道高三數學填空題!!!第九道填空題,答案是48,求具體解題思路

10樓:匿名使用者

先取右上角三角形的上邊那條邊為第一條邊。

走完右上三角回到o點,若接著走下方三角,有兩種情況,再走左上三角,又有兩種情況,也就是說走下方三角有2*2=4種情況;若接著走左上三角,與走下方三角同理,也有2*2=4種情況。

也就是說,隨意選一條邊起步,可以有4+4=8種情況。

一共有6條可以選擇的起步邊,所以有8*6=48種情況。

求一道分段計算類數學題答案,求詳細解題過程越詳細越好謝謝!

11樓:匿名使用者

解:如果購買金額是3萬元,則實際付款是:30000×0.9=27000元>26100元.

因而第二次購買的實際金額是:26100÷0.9=29000元.兩次購買金額是:

7800+29000=36800元.如一次性購買則所付錢數是:30000×0.9+6800×0.

8=32440元.

可少付款7800+26100-32440=1460元.答:可少付款1460元.

12樓:

第一次在該廠買原材料付款7800,則原價遠低於1萬及1萬的9折,所以沒有優惠,原價為7800

第二次購買付款26100,由於不超過3萬的為9折,所以這批原價為26100/0.9=29000

如果他一次性購買,共7800+29000=36800元則他應付:30000*0.9+6800*0.8=32400比起原價,他少付:36800-32400=4360

13樓:夢無涯

第一次在該廠買原材料實際應付款:7800,第二次購買實際付款:26100/0.9=29000

優惠2900

如果他一次性購買同樣數量原材料,總錢為:36800一次性購買則所付錢數是:30000×0.9+6800×0.8=32440

優惠36800-32440=4360

可以少付4360-2900=1460

14樓:c寒c寒

童鞋你是不是把第二次付款當作沒打折之前的了?實際它是打九折之後的。。。

15樓:匿名使用者

多家開發商將旅客傳送到

幫我解一道數學題 ,急急!!!!!!!!

16樓:匿名使用者

學科:數學

教學內容:反函式

1.基礎知識圖表

2.反函式的概念

設y=f(x)表示y是自變數x的函式,它的定義域為a,值域為c,從式子y=f(x)中解出x,得到式子x=φ(y).如果對於y在c中的任何一個值,通過x=φ(y),x在a中都有唯一確定的值和它對應,那麼x=φ(y)就表示x是自變數y的函式.這樣的函式x=φ(y)(y∈c)叫做函式y=f(x)(x∈a)的反函式,記作x=f-1(y),通常將它改寫成y=f-1(x).

函式y=f(x)的定義域是它的反函式y=f-1(x)的值域;函式y=f(x)的值域是它的反函式y=f-1(x)的定義域.

函式y=f(x)的影象和它的反函式y=f-1(x)的影象關於直線y=x對稱.

3.反函式概念的理解

反函式實質上也是函式.

反函式是相對於原函式而言,換句話說,反函式不能脫離原函式而單獨存在.

並不是所有的函式都有反函式.例如函式y=x2沒有反函式.只有原象唯一的函式,即對任意x1≠x2能推斷出f(x1)≠f(x2)成立的函式f(x)才具有反函式(這裡x1、x2是f(x)的定義域內的兩個值).

如果函式y=f(x)有反函式y=f-1(x),那麼函式y=f(x)也是其反函式y=f-1(x)的反函式,即它們互為反函式.

函式y=f(x)的定義域和值域分別是其反函式y=f-1(x)的值域和定義域.

反函式的定義域和值域應該正好是原來函式的值域和定義域.例如,函式y= (x∈z)不是函式y=2x(x∈z)的反函式,因為前者的定義域顯然不是後者的值域.因此,求函式y=f(x)的反函式y=f-1(x)時,必須確定原來函式y=f(x)的值域.

4.求給定解析式的函式y=f(x)的反函式,其步驟為:

(1)從方程y=f(x)中解出x=f-1(y);

(2)將x、y互換,得到y=f-1(x);

(3)根據y=f(x)的值域,寫出y=f-1(x)的定義域.

互為反函式的兩個函式如果有解析式,一般是不同的,但也有相同的.例如函式y=x的反函式仍是y=x,函式y= 的反函式仍是y= .

5.互為反函式影象間的關係

在同一個直角座標系中,函式y=f(x)與其反函式y=f-1(x)的影象關於直線y=x對稱.特別地,當函式與其反函式相同時,函式的影象本身關於直線y=x對稱.

在y=f(x)與x=f-1(y)中,x、y所表示的量相同,但是地位不同.在y=f(x)中,x是自變數,y是x的函式;在x=f-1(y)中,y是自變數,x是y的函式.在同一個直角座標系中,y=f(x)與x=f-1(y)的影象是同一個點集.

6.反函式具備的其它性質

在y=f(x)與y=f-1(x)中,x、y所處的地位相同,但表示的量的意義不同.

若y=f(x)(x∈a),與y=f-1(x)(x∈c)互為反函式,則有

f〔f-1(x)〕=x(x∈c);

f-1〔f(x)〕=x(x∈a).

互為反函式的兩個函式在它們各自的定義域具有相同的單調性.

奇函式若有反函式,則其反函式也是奇函式.

具有單調性的函式必有反函式.

兩個互為反函式的影象如果有交點,它們的交點不一定在直線y=x上.

【重點難點解析】

1.求反函式的三步中,切記第三步必不可少,即由原函式y=f(x)的值域確定反函式的定義域,求出反函式後,一定要給出反函式的定義域.

2.x=f(y)與y=f-1(x)是同一函式

這是因為它們的定義域、值域對應相同(都分別是原來函式的值域和定義物),對應法則相同.

3.判定一個定義在a上的函式y=f(x)有無反函式的方法

設x1、x2∈a且x1≠x2,判斷f(x1)≠f(x2)是否恆成立,若是,則f(x)在a上有反函式;若否,則f(x)在a上無反函式;如果一個函式在某個區間上是單調函式,則它在該區間上有反函式.

4.分段函式的反函式的求法

設分段函式

y= 有反函式.它的反函式須分段求出,

即y=例1 求下列函式的反函式:(1)y=3x +4(x≤0);

(2)y= (-1≤x≤0)

解:(1)由y=3x +4,得x = ;

兩邊立方,得x2=( )3

當且僅當( )3≥0即y≥4時,x在r-上有唯一解.即

x=-( ) .

交換x、y,得y=-( ) (x≥4).

這就是所求的反函式.

(2)由y= ,得x2=1-y2①

當且僅當0≤1-y2≤1(y≥0)時,①在〔-1,0〕上有唯一解,即x=- .

交換x、y,得y=-( )(x∈〔0,1〕)

這就是所求的反函式.

評析 在ξ1.6討論求函式的值域時,我們介紹了反求法,那時是尋求使x在定義域內有解的條件.而在這裡,我們尋求的是使x在定義域內有唯一解的條件.你能說出其中的道理嗎?

例2 已知f(x)= ,函式y=g(x)的影象與函式y=f-1(x+1)的影象關於直線y=x對稱,則g(11)等於( )

a. b. c. d.

解:先求f(x)= (x≠1)的反函式.

由y= ,得x= (y≠2).

將x與y交換,得f(x)的反函式f-1(x)= (x≠2).

∴f-1(x+1)= .

∵f-1(x+1)與g(x)關於y=x對稱,

∴f-1(x+1)與g(x)是互為反函式.

令 =11,解得x= ,∴g(11)= .故選b.

分析 f-1(x+1)表示以x+1代替反函式中的自變數,即先求f-1(x),再以x+1替代x.f-1(x+1)不能理解成f(x+1)的反函式.

例3 已知f(x)= ,求f-1〔f(x)〕和f〔f-1(x)〕.

解:設y= (x≠-1),則x= (y≠2).

∴f-1(x)= (x≠2),

f-1〔f(x)〕= =x (x≠-1),

f〔f-1(x)〕= =x (x≠2).

分析 f-1〔f(x)〕與f〔f-1(x)〕儘管均等於x,但由於定義域不同,因此它們是不同的函式.其中f-1〔f(x)〕中的x∈a,f〔f-1(x)〕中的x∈c.

例4 求函式f(x)= 的反函式.

分析 分析求出y=x2-1(x≥0)與y=2x-1(x<0)的反函式,再寫成一個函式的分段形式.

解:1°由y=x2-1,得x2=y+1

當且僅當,y+1≥0即y≥-1時,x在〔0,+∞〕上有唯一解,即x= .

故y=x2-1(x≥0)的反函式是y= (x≥-1).

2°由y=2x-1,得x= ①

∵x<0,即 <0,得y<-1

∴當且僅當y<-1時,①在r-上有唯一解.

故y=2x-1(x<0)的反函式是y= (x<-1).

由1°,2°知,所求反函式為

f-1(x)=

【難解巧解點撥】

例1 已知函式f(x)= (a≠ )的影象關於直線y=x對稱,求a的值.

分析 所謂函式影象關於直線y=x對稱,即是說這個函式與其反函式是同一個函式.

解:由y= (x≠-a),得x= (y≠2).

∴f-1(x)= (x≠2).

∵函式f(x)的影象關於直線y=x對稱,

∴f(x)與f-1(x)是同一個函式,

∴-a=2,

∴a=-2.

評析 如果兩個函式相同,那麼它們的對應法則相同且它們的定義域相同.

對於既不為0,也不為1的實數a,函式y= 的影象恆關於直線y=x對稱.你能證明這一結論嗎?

例2 已知函式y=f(x)的定義域是a,值域是c,且反函式f-1(x)存在.如果f(x)是a上的增函式,求證:f-1(x)是c上的增函式.

分析 依據函式的單調性定義證明.

證:設x1,x2∈c,且x12 時,清洗兩次後殘留的農藥量較少;

當a=2 時,兩種清洗方法具有相同的效果;

當0<a<2 時,一次清洗殘留的農藥量較少.

【同步達綱練習】

一、選擇題

1.y=a- (x≥a)的反函式是( )

a.y=(x-a)2+a(x≥a) b.y=(x-a)2-a(x≥a)

c.y=(x-a)2+a(x≤a) d.y=(x-a)2-a(x≤a)

2.已知函式y=f(x)有反函式,則方程f(x)=0的根的情況是( )

a.有且僅有一實根 b.至多有一實根

c.至少有一實根 d.0個,1個或1個以上實根

3.點(a,b)在y=f(x)的影象上,則下列各點中必在其反函式影象上的點是( )

a.(a,f-1(a)) b.(f-1(b),b) c.(f-1(a),a) d.(b,f-1(b))

4.設有三個函式,第一個函式是y=f(x),它的反函式是第二個函式,而第三個函式與第二個函式的影象關於原點對稱,那麼第三個函式是( )

a.y=-f(x) b.y=f-1(-x) c.y=-f-1(-x) d.y=f-1(x)

5.函式y=f(x)的影象經過第

三、四象限,則y=-f-1(x)的影象經過( )

a.第一、二象限 b.第

二、三象限 c.第

三、四象限 d.第

一、四象限

6.在下列區間中,使y=2|x|不存在反函式的區間是( )

a.〔2,4〕 b.〔-4,4〕 c.〔0,+∞〕 d.(-∞,0〕

7.若函式y=f-1(x)的影象經過點(-2,0),則函式y=f(x+5)的影象經過點( )

a.(5,-2) b.(-2,-5) c.(-5,-2) d.(2,-5)

二、填空題

1.函式y= 的值域為 .

2.已知函式f(x)定義在(-∞,0〕上,且f(x+1)=x2+2x,則f-1(1)= .

3.直線y=ax+2與直線y=3x-b關於直線y=x對稱,則a= ,b= .

4.若函式f(x)= (a≠ )的影象關於y=x對稱,則a= .

5.函式f(x)=ax3+ax-1的反函式的影象必過點 .

6.已知f(x)= 的反函式就是自身,則a= ,b= .

7.y= 是否有反函式? ;當x∈〔0, 〕時,反函式為 ,定義域為 ;當x∈〔- ,0〕時,反函式為 ,定義域為 .

8.已知f(x)= (x∈r且x≠- ),f-1(2)的值為 .

三、解答題

1.函式f(x)=x-n(x<0,n∈z)是否存在反函式?若不存在說明理由.若存在,求出f-1(x),並判斷是增函式還是減函式?

2.已知f(x)=x2,g(x)= x+5,設f(x)=f〔g-1(x)〕-g-1〔f(x)〕.試求f(x)的最小值.

3.已知函式y=f(x)的反函式為y=f-1(x).

(1)試求函式y=f(mx+n)(m≠0)的反函式;

(2)試求函式y=f(ax3+b)(a≠0)的反函式.

【素質優化訓練】

1.求函式f(x)= 的反函式.

2.設函式f(x)= ,已知函式y=g(x)的影象與y=f-1(x+1)的影象關於直線y=x對稱,求g(3)的值.

3.已知f(x)= (x≠-a,a≠ )

(1)求f(x)的反函式;

(2)若f(x)=f-1(x),求a的值;

(3)如何作出滿足(2)中條件的y=f-1(x)的影象.

參***:

【同步達綱練習】

一、1.c 2.b 3.d 4.c 5.選b 6.b 7.c

二、1.{y|y∈r,且y≠- } 2.- 3.

a= b=6 4.a=-5 5.(0,-1) 6.

0,非零實數 7.沒有;y= ;〔0,4〕;y=- ;〔0,4〕 8.-

三、1.n=0時,f(x)=1,不存在反函式.

當n為非零偶數時,f-1(x)=- =-x (x>0)①n>0,

且n∈z,f-1(x)為增函式,②n<0,且n∈z,f-1(x)為減函式.

當n為奇數時,y=x-n(x<0,y<0),

反函式f-1(x)=x (x<0)①n>0且n∈z,f-1(x)為減函式

②n<0且n∈z,f-1(x)為增函式 2.-90.

3.(1)y= f-1(x)- (2)y=

【素質優化訓練】

1.f(x)=

2.3.解:(1)y= (x≠2)

(2)a=-2

(3)f-1(x)= =2+ (x≠2 y≠2).要得y=f-1(x)的影象,只需將y= 向右平移2個單位,再向上平移2個單位,即得y=f-1(x)的影象.(影象略)

一道數學題求解答,一道數學題,求解答過程

1 設每次降價率為x 500 1 x 405 1 x 81 100 x 0.1 10 商品每次的降價率為10 2 設第一次降價後售出該種商品x件,則第二次降價後售出該商品100 x件。500 1 10 x 405 100 x 350 100 8000 45x 2500 x 500 9 x為正整數,x...

一道數學題,要詳細過程,求解一道數學題。

冷月心蕩 第一個式子不論是三次方還是開五次方都是奇數倍的,所以裡面的數是正的還是負的都無所謂,而第二個式子 3的平方是正數,再開四次方 偶數 還是正數且有意義,而等式右邊 3 的四次方是沒有意義的,所以式子不成立 偶次方根中的底數 不能為負數,像 3 這樣是錯誤的。4 3 4 3 無意義 俊狼獵英 ...

一道數學題求解,一道數學題求解

解原式 2009 2009 2009 2010 2009 2009 1 1 2010 1 1 1 2010 1 2011 2010 2010 2011 兩種 1 2009除以2009又2010分之2009 2009 2009 2009又2010分之2009 2009 1 2009 2009 2010...