1樓:匿名使用者
用第二類換原法中的三角代換基本上就這兩個公式了...
其他要掌握的就是三角函式中的和差化積公式以及積化和差公式
這個在其他的諸如求極限,高階導數中也較為常用:
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
sinα·cosβ=[sin(α+β)+sin(α-β)]/2
cosα·sinβ=[sin(α+β)-sin(α-β)]/2
cosα·cosβ=[cos(α+β)+cos(α-β)]/2
sinα·sinβ=-[cos(α+β)-cos(α-β)]/2
不定積分中的三角函式還有幾個常用的積分公式應該知道的...(教材上也有)
比如:∫tanxdx=-in|cosx|+c
∫cotxdx=in|six|+c
∫secxdx=in|secx+tanx|+c
∫cscxdx=in|cscx-cotx|=c等...
高數這東西嘛...難懂,但是從對知識的掌握要求來看...比起高中數學那真是小巫見大巫了...呵呵,我也要考試了...一起加油吧~~~
2樓:匿名使用者
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=(cosα)^2-(sinα)^2=)=2(cosα)^2-1=1-2(sinα)^2
tan(2α)=2tanα/(1-tan²α)
不定積分裡有個關於三角函式的萬能代換公式公式是什麼
3樓:小甜甜愛亮亮
1.簡單的萬能公式
(以下公式很常用)
2.稀有的萬能公式
(以下公式不常用)
拓展回答:
萬能公式,可以把所有三角函式都化成只有tan(a/2)的多項式之類的。用了萬能公式之後,所有的三角函式都用tan(a/2)來表示,為方便起見可以用字母t來代替,這樣一個三角函式的式子成了一個含t的代數式,可以用代數的知識來解。萬能公式,架起了三角與代數間的橋樑。
具體作用含有以下4點:
將角統一為α/2;
將函式名稱統一為tan;
任意實數都可以表示為tan(α/2)的形式(除特殊),可以用正切函式換元;
在某些積分中,可以將含有三角函式的積分變為有理分式的積分。
總結:因此,這組公式被稱為以切表弦公式,簡稱以切表弦。它們是由二倍角公式變形得到的。而被稱為萬能公式的原因是利用的代換可以解決一些有關三角函式的積分。參見三角換元法。
4樓:水瓶發紡
= 2/根號5 arctan1/根號5
幫忙總結下 高數不定積分 所需要用到的有關三角函式的公式
5樓:匿名使用者
三角函式誘導公式
目錄誘導公式的本質
常用的誘導公式
其他三角函式知識
1. 同角三角函式的基本關係式
2. 同角三角函式關係六角形記憶法
3. 兩角和差公式
4. 二倍角的正弦、餘弦和正切公式
5. 半形的正弦、餘弦和正切公式
6. 萬能公式
7. 三倍角的正弦、餘弦和正切公式
8. 三角函式的和差化積公式
9. 三角函式的積化和差公式
公式推導過程
誘導公式的本質
常用的誘導公式
其他三角函式知識
1. 同角三角函式的基本關係式
2. 同角三角函式關係六角形記憶法
3. 兩角和差公式
4. 二倍角的正弦、餘弦和正切公式
5. 半形的正弦、餘弦和正切公式
6. 萬能公式
7. 三倍角的正弦、餘弦和正切公式
8. 三角函式的和差化積公式
9. 三角函式的積化和差公式
公式推導過程
編輯本段誘導公式的本質
所謂三角函式誘導公式,就是將角n·(π/2)±α的三角函式轉化為角α的三角函式。
編輯本段常用的誘導公式
公式一: 設α為任意角,終邊相同的角的同一三角函式的值相等:
sin(2kπ+α)=sinα k∈z
cos(2kπ+α)=cosα k∈z
tan(2kπ+α)=tanα k∈z
cot(2kπ+α)=cotαk∈z
公式二: 設α為任意角,π+α的三角函式值與α的三角函式值之間的關係:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三: 任意角α與 -α的三角函式值之間的關係:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四: 利用公式二和公式三可以得到π-α與α的三角函式值之間的關係:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cos(π-α)=-cosα
公式五: 利用公式一和公式三可以得到2π-α與α的三角函式值之間的關係:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六: π/2±α與α的三角函式值之間的關係:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
推算公式:3π/2±α與α的三角函式值之間的關係:
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cos(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
誘導公式記憶口訣:「奇變偶不變,符號看象限」。
「奇、偶」指的是π/2的倍數的奇偶,「變與不變」指的是三角函式的名稱的變化:「變」是指正弦變餘弦,正切變餘切。(反之亦然成立)「符號看象限」的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。
符號判斷口訣:
「一全正;二正弦;三兩切;四餘弦」。這十二字口訣的意思就是說: 第一象限內任何一個角的四種三角函式值都是「+」; 第二象限內只有正弦是「+」,其餘全部是「-」; 第三象限內只有正切和餘切是「+」,其餘全部是「-」; 第四象限內只有餘弦是「+」,其餘全部是「-」。
「asct」反z。意即為「all(全部)」、「sin」、「cos」、「tan」按照將字母z反過來寫所佔的象限對應的三角函式為正值。
編輯本段其他三角函式知識
同角三角函式的基本關係式
倒數關係
tanα ·cosα=1
sinα ·cscα=1
cosα ·secα=1
商的關係
sinα/cosα=tanα=secα/cscα
cosα/sinα=cosα=cscα/secα
平方關係
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cos^2(α)=csc^2(α)
同角三角函式關係六角形記憶法
構造以"上弦、中切、下割;左正、右餘、中間1"的正六邊形為模型。
倒數關係
對角線上兩個函式互為倒數;
商數關係
六邊形任意一頂點上的函式值等於與它相鄰的兩個頂點上函式值的乘積。(主要是兩條虛線兩端的三角函式值的乘積,下面4個也存在這種關係。)。由此,可得商數關係式。
平方關係
在帶有陰影線的三角形中,上面兩個頂點上的三角函式值的平方和等於下面頂點上的三角函式值的平方。
兩角和差公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)
二倍角的正弦、餘弦和正切公式
sin2α=2sinαcosα
cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan2α=2tanα/(1-tan^2(α))
tan(1/2*α)=(sin α)/(1+cos α)=(1-cos α)/sin α
半形的正弦、餘弦和正切公式
sin^2(α/2)=(1-cosα)/2
cos^2(α/2)=(1+cosα)/2
tan^2(α/2)=(1-cosα)/(1+cosα)
tan(α/2)=(1—cosα)/sinα=sinα/1+cosα
萬能公式
sinα=2tan(α/2)/(1+tan^2(α/2))
cosα=(1-tan^2(α/2))/(1+tan^2(α/2))
tanα=(2tan(α/2))/(1-tan^2(α/2))
三倍角的正弦、餘弦和正切公式
sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
三角函式的和差化積公式
sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)
sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)
cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)
cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)
三角函式的積化和差公式
sinα·cosβ=0.5[sin(α+β)+sin(α-β)]
cosα·sinβ=0.5[sin(α+β)-sin(α-β)]
cosα·cosβ=0.5[cos(α+β)+cos(α-β)]
sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]
編輯本段公式推導過程
萬能公式推導
sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,
(因為cos^2(α)+sin^2(α)=1)
再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))
然後用α/2代替α即可。
同理可推導餘弦的萬能公式。正切的萬能公式可通過正弦比餘弦得到。
三倍角公式推導
tan3α=sin3α/cos3α
=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)
=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)
上下同除以cos^3(α),得:
tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))
sin3α=sin(2α+α)=sin2αcosα+cos2αsinα
=2sinαcos^2(α)+(1-2sin^2(α))sinα
=2sinα-2sin^3(α)+sinα-2sin^3(α)
=3sinα-4sin^3(α)
cos3α=cos(2α+α)=cos2αcosα-sin2αsinα
=(2cos^2(α)-1)cosα-2cosαsin^2(α)
=2cos^3(α)-cosα+(2cosα-2cos^3(α))
=4cos^3(α)-3cosα
即sin3α=3sinα-4sin^3(α)
cos3α=4cos^3(α)-3cosα
和差化積公式推導
首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb
我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb
所以,sina*cosb=(sin(a+b)+sin(a-b))/2
同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2
同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb
所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb
所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2
同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2
這樣,我們就得到了積化和差的四個公式:
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
cosa*cosb=(cos(a+b)+cos(a-b))/2
sina*sinb=-(cos(a+b)-cos(a-b))/2
好,有了積化和差的四個公式以後,我們只需一個變形,就可以得到和差化積的四個公式.
我們把上述四個公式中的a+b設為x,a-b設為y,那麼a=(x+y)/2,b=(x-y)/2
把a,b分別用x,y表示就可以得到和差化積的四個公式:
sinx+siny=2sin((x+y)/2)*cos((x-y)/2)
sinx-siny=2cos((x+y)/2)*sin((x-y)/2)
cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)
cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)
這題都是三角函式的不定積分怎麼求
半形代換。令 u tan x 2 則 sinx 2u 1 u 2 cosx 1 u 2 1 u 2 dx 2du 1 u 2 i 2u 1 u 2 1 u 2 2 1 4u u 2 1 u 2 2du 1 u 2 4u 1 u 2 du 1 4u u 2 1 u 2 2 再化為有理分式部分分式,本題...
三角函式公式,三角函式公式大全
1 銳角三角函式定義 銳角角a的正弦 sin 餘弦 cos 和正切 tan 餘切 cot 以及正割 sec 餘割csc 都叫做角a的銳角三角函式。正弦 sin 等於對邊比斜邊 餘弦 cos 等於鄰邊比斜邊 正切 tan 等於對邊比鄰邊 餘切 cot 等於鄰邊比對邊 正割 sec 等於斜邊比鄰邊 餘割...
兩個三角函式的乘積求不定積分求指導
我不是他舅 由積化和差公式 原式 1 2 sin 2wt sin dt 1 4 cos 2wt 1 2 tsin c 櫻塞夏司 兩個三角函式相乘用和差公式 公式sin sin 2sin 2 cos 2 sin sin 2cos 2 sin 2 cos cos 2cos 2 cos 2 cos cos...