1樓:匿名使用者
10÷45=2/9(小時)1號隊員以45千米/小時的速度獨自行進用的時間
35x2/9=70/9(千米)除一號隊員外的其它隊員在1號隊員行進10千米的同時行進的路程
在一號隊員行進10千米的同時,其他隊員行進了70/9千米,所以10-70/9是一號隊員返回時1好隊員與其他隊員一共要行進的路程
返回時一號隊員和其他隊員是一個面對面的運動,一號隊員行進了多少時間,其他隊員也行進了相同時間,所以(10-70/9)÷(45+35)為一號隊員返回與其他隊員相遇所用的時間
2/9+1/361號隊員從離隊開始到與隊員重新會合的時間
請採納,謝謝,不懂可追問
2樓:匿名使用者
注意算式後方。返回時的總路程除以的是雙方速度之和。也就是雙方相遇時的時間。
解答無問題
3樓:
整個過程中大部隊行進的路程是 35x2/9=70/9(千米)
10-70/9 即1號隊員掉頭時與大部隊得距離差,從此時開始1號隊員與大部隊相向而行,即等效為兩方距離差÷兩方速度和,即(10-70/9)÷(45+35)
所以就是因為兩方速度相加,才會用10-70/9作為返回時的總路程
4樓:
這是相遇問題,畫圖的話更容易理解,設1號行了10千米後返回到相遇用時x小時:
————————————10||
——————--> <------70/9 35x 45x——|————
10-70/9
得到:(10-70/9)是返回時的總路程
式子為:10-70/9=35x+45x ----->x=1/36
加上前面用時2/9小時,總時間為1/36+2/9=1/4(時)
5樓:
他返回是大部隊仍在前進。
6樓:洲洲
這是幾年級的題呀!我才初一呢!
問一道數學題?問一道數學題?
1 列二元一次方程組 設每名熟練工和新工人每月分別可以安裝x和y輛電動汽車,則x 2y 8 2x 3y 14 解得 x 4 y 2 或 列一元一次方程 設1個熟練工每月可做x個,則新工人每人每月可做 8 x 2,2x 3 8 x 2 14,解得x 4,則 8 x 2 2 2 設熟練工x 新工人y,則...
問大家一道數學題,問一道數學題。
代斐勞彭丹 其實這種題目是要結合韋達定理來做的 韋達定理,又稱根與係數的關係,說的是方程ax by c 0有兩個根x1,x2,那麼這兩個根的與係數的關係滿足x1 x2 b a,x1x2 c a,下面括號內為解釋 1 令y 0 這樣就和x軸相交 則x 2 m 3 x m 0 則x1 x2 m 3 因為...
問一道初中數學題,問一道數學題。
解 正確答案 2x x 3 2 x 14x 6 2x x 3 2x 28x 12 29x 15 很高興為你解決以上問題,希望對你的學習有所幫助! 這個是小學的加法原理,兩個數相加,已知其中一個加數與相加後的結果,求另一個加數,那就用這個結果減去其中一個加數即可 你不明白主要是對多項式的加減法則不熟悉...