矩陣和行列式有什麼相同和不同,行列式和矩陣有什麼關係和區別

時間 2021-09-08 22:10:32

1樓:匿名使用者

n階行列式實質上是一個n^2元的函式,當把n^2個元素都代上常數時,自然得到一個數。當我們寫的時候,寫成一個表是為了方便的反映函式的物性。當然,決不是指任何n^2元函式都是行列式,具體的行列式函式定義你找書一看看。

為了讓你自己覺得好理解一些,你可以試著照行列式的定義把行列式寫成多項式和的常見形式,當然那個形式比較複雜,但本質上與行列式是一樣的,只是寫成行列式易於直觀的做各種運算處理。

矩陣就是一個數表,它不能從整體上被看成一個數(只有一個數的1階矩陣除外),當矩陣的行數與列數相等為n時,我們把相應的數代入上面我提到的n^2元函式中就得到一個行列式。代入的方法則是簡單的把兩個表對應起來。

在作為一個數表的矩陣上,我們本可以任意的定義運算規則(真的是指你愛怎麼定義就怎麼定義),但是實際上我們多是把矩陳用於解決某些特殊型別的問題,所以你想要知道某種運算,比如乘法運算是怎麼來的就得看年它們是做什麼用的(比如用於線性變換)。

2樓:

行列式的本質是一個數

類似於「1+5-2」它是一個式子

但它本質上是3,是一個數

矩陣是一些「數」組成的「陣列」

它不能化為一個數

矩陣和行列式有什麼相同和不同?

3樓:哆嗒數學網

矩陣是一個數表

行列式算出來是一個數

4樓:匿名使用者

n階行列式實質上是一個n^2元的函式,當把n^2個元素都代上常數時,自然得到一個數。當我們寫的時候,寫成一個表是為了方便的反映函式的物性。當然,決不是指任何n^2元函式都是行列式,具體的行列式函式定義你找書一看看。

為了讓你自己覺得好理解一些,你可以試著照行列式的定義把行列式寫成多項式和的常見形式,當然那個形式比較複雜,但本質上與行列式是一樣的,只是寫成行列式易於直觀的做各種運算處理。

矩陣就是一個數表,它不能從整體上被看成一個數(只有一個數的1階矩陣除外),當矩陣的行數與列數相等為n時,我們把相應的數代入上面我提到的n^2元函式中就得到一個行列式。代入的方法則是簡單的把兩個表對應起來。

在作為一個數表的矩陣上,我們本可以任意的定義運算規則(真的是指你愛怎麼定義就怎麼定義),但是實際上我們多是把矩陳用於解決某些特殊型別的問題,所以你想要知道某種運算,比如乘法運算是怎麼來的就得看年它們是做什麼用的(比如用於線性變換)。

行列式和矩陣有什麼關係和區別

5樓:夏小紙追

n階行來列式實質上是一個n^2元的自函式,當把n^2個元素都代上常數時,自然得到一個數。當我們寫的時候,寫成一個表是為了方便的反映函式的物性。當然,決不是指任何n^2元函式都是行列式,具體的行列式函式定義你找書一看看。

為了讓你自己覺得好理解一些,你可以試著照行列式的定義把行列式寫成多項式和的常見形式,當然那個形式比較複雜,但本質上與行列式是一樣的,只是寫成行列式易於直觀的做各種運算處理。

矩陣和行列式的區別

6樓:綠鬱留場暑

區別如下:

1、運算結果上不同

矩陣是一個**,行數和列數可以不一樣;而行列式是一個數,且行數必須等於列數。只有方陣才可以定義它的行列式,而對於長方陣不能定義它的行列式。

兩個矩陣相等是指對應元素都相等;兩個行列式相等不要求對應元素都相等,甚至階數也可以不一樣,只要運算代數和的結果一樣就行了。

2、運算方式不同

兩矩陣相加是將各對應元素相加;兩行列式相加,是將運算結果相加,在特殊情況下(比如有行或列相同),只能將一行(或列)的元素相加,其餘元素照寫。

3、性質不同

數乘矩陣是指該數乘以矩陣的每一個元素;而數乘行列式,只能用此數乘行列式的某一行或列,提公因數也如此。

4、變換後的結果不同

矩陣經初等變換,其秩不變;行列式經初等變換,其值可能改變:換法變換要變號,倍法變換差倍數;消法變換不改變。

7樓:小柯西

n階行列式實質上是一個n^2元的函式,當把n^2個元素都代上常數時,自然得到一個數。當我們寫的時候,寫成一個表是為了方便的反映函式的物性。當然,決不是指任何n^2元函式都是行列式,具體的行列式函式定義你找書一看看。

為了讓你自己覺得好理解一些,你可以試著照行列式的定義把行列式寫成多項式和的常見形式,當然那個形式比較複雜,但本質上與行列式是一樣的,只是寫成行列式易於直觀的做各種運算處理。

矩陣就是一個數表,它不能從整體上被看成一個數(只有一個數的1階矩陣除外),當矩陣的行數與列數相等為n時,我們把相應的數代入上面我提到的n^2元函式中就得到一個行列式。代入的方法則是簡單的把兩個表對應起來。

在作為一個數表的矩陣上,我們本可以任意的定義運算規則(真的是指你愛怎麼定義就怎麼定義),但是實際上我們多是把矩陳用於解決某些特殊型別的問題,所以你想要知道某種運算,比如乘法運算是怎麼來的就得看年它們是做什麼用的(比如用於線性變換)。

8樓:hear小子

行列式主要解決n階行列式n維向向量,以這個向量為鄰邊的n維圖形的面積或者體積(計算面積體積n*n)柯西定義

矩陣主要用來看方程組的解是否唯一(方程組的解n*m)

9樓:匿名使用者

與行列式是兩個完全不同的概念.矩陣僅僅是一個矩形的矩陣「數表」,行列式是在一個方形數表中根據定義規則進行運算的代數式,這是基本的區別.具體來說有以下幾點:

(1)行列式是方形數表中定義,對不是方形的數表,不能討論行列式的問題,而矩陣無此限制。

(2)矩陣的加法與行列式的加法不同.

(3)數乘矩陣與數乘行列是不同.

(4)矩陣相乘與行列式相乘不同.

(5)行列式相等與矩陣相等不同。兩行列式相等只要值一樣就認為是相等的。兩矩陣相等,則要求對應元素都分別相等。ok?

10樓:匿名使用者

有本質的區別

行列式是一個數,可以計算出其具體數值。

而矩陣不是,是數的列陣,不能計算其數值

矩陣和行列式有什麼區別 50

11樓:_彼岸無岸

表示方式不同

。抄矩陣用的是方括號,

bai行列式用的是雙垂du線,例如[a]這樣的就zhi是矩陣,而|a|這樣的就是行列式。

形狀dao不同。矩陣的行數和列數可以相等,也可以不等,也就是說矩陣的形狀可以是正方形的也可以是長方形的,而行列式的行和列必須相等,其形狀必須是正方形的。

矩陣是一個數表,分為同型矩陣,係數矩陣等等;行列式就是是一個數。它們各自的加減乘除運算方法不一樣。

5.矩陣經初等變換,其秩不變;行列式經初等變換,其值可能改變:換法變換要變號,倍法變換差倍數;消法變換不改變。

12樓:**

行列式代表一個數,矩陣可以代表一個方程

13樓:二月的柳絮

矩陣相當於向量,行列式是一個其數

什麼是矩陣,什麼是行列式,行列式和矩陣的區別是什麼

矩陣 matrix 是一個按照長方陣列排列的複數或實數集合,最早來自於方程組的係數及常數所構成的方陣。這一概念由19世紀英國數學家凱利首先提出。行列式在數學中,是由解線性方程組產生的一種算式。行列式的特性可以被概括為一個多次交替線性形式,這個本質使得行列式在歐幾里德空間中可以成為描述 體積 的函式。...

伴隨矩陣的行列式是多少?的平方嗎?為什麼

假面 伴隨矩陣的行列式是aa a e 那麼對這個式子的兩邊再取行列式。得到 a a a e 而顯然 a e a n 所以 a a a n 於是 a a n 1 伴隨矩陣是矩陣理論及線性代數中的一個基本概念,是許多數學分支研究的重要工具,伴隨矩陣的一些新的性質被不斷髮現與研究。 一個人郭芮 aa a ...

急,誰能告訴我線性代數中矩陣和行列式這兩章怎麼算嗎

一 行列式定義 行列式歸根結底就是一個數值,只不過它是由一大堆數字經過一種特殊運算規則而得出的數而已。當然這堆數排列成相當規範的n行n列的數表形式了。所以我們可以把行列式當成一個數值來進行加減乘除等運算。舉個例子 比如說電視機 看做一個行列式 是由很多個小的元件 行列式中的元素 構成的,經過元件的相...