這幾題應用題該怎樣做?

時間 2022-12-06 01:50:02

1樓:不是老教師

小學學生看這個:

1、分析:本題為小學數學典型應用題中雞兔同籠問題。

假設34元14千克的茶葉都是在28元中取出的,那麼就和實際價錢差了34×14-28×14=84元,每少1千克42元的茶葉,會出現42-28=14元的差價,84元的差價就少算了。

84÷14=6(千克)42元的茶葉,所以,42元的茶葉取出了6千克。28元的茶葉取出了14-6=8千克。

算式:(34×14-28×14)÷(42-28)=6(千克)、14-6=8(千克)。

答42元的取出6千克,28元的取出8千克。

2、分析:這是一道用比計算的應用題,先求總份數,即可:

2+3=5 、200×3/5=120(個)、200×2/5=80(個)

答:略3、此題與第一題為同型別的應用題,區別在於是分數計算,(第一題也可以分數計算)先假設增加的都是農村人口(道理和1題基本相同)

(城鎮人口比例)

42×1/3=14(萬),42×(1-1/3)=(28)萬。

答:城市14萬,農村28萬。

注意,1、3題中,假設都是甲,求出的是乙。別搞錯了。

4,典型應用題的差倍問題,分析:2歲與44歲 之間的差是44-2=42歲,這42歲的差分三段、即:

小明2歲——小明現在(王老師以前)——王老師現在(小明以後)——王老師44歲。

而人和人之間的年齡差不變(關鍵),即42是3個年齡差,則一個年齡差是:

(44-2)÷3=14(歲),小明現在年齡是:2+14=16(歲),王老師的年齡是:16+14=30(歲),答:略。

2樓:美麗的洛陽

1.從每千克28元的茶葉和每千克42元的茶葉中各取出一部分,混合成34元一千克的茶葉共14千克,問兩種茶葉各取出了多少千克?

解:設每千克28元的茶葉取x克,每千克42元的茶葉取y克。

則x+y=14

28x+42y=34*14

392-28y+42y=476

解得x=8 y=6

2.學校的足球數與排球數的比是2:3,兩種球共200個,求兩種球各有多少?

解:設 足球數x,排球數y,則x=2/3*y

x+y=200

解得x=80 y=120

3.某市現有42萬人口,計劃一年後城鎮人口增加,農村人口增加,這樣全市人口將增加1‰,求這個市現在的城鎮人口與農村人口。

解:設現在的城鎮人口為x,農村人口y,則x+y=420000

解得x=14萬 y=28萬。

4.王老師對小明說:「我像你這麼大時,你那時才2歲,到你長到我這般年齡時,我那時已經44歲了。」你知道王老師與小明現在年齡個是多少歲嗎?

解:設王老師與小明現在年齡各是x,y歲。

則y-(x-y)=2

x+(x-y)=44

2y-x=2

2x-y=44

解得x=30 y=16

3樓:網友

1.設取出每千克28元的茶葉m千克,每千克42元的茶葉n千克。28m+42n=32*14;m+n=14;得出:m=10,n=4

2.足球數:200*(2/5)=80;排球數200-80=1203.

設城鎮人口x萬,農村人口(42-x)萬,(1+

001);得出:x=14,42-x=28

4.設小明現在年齡是x歲,王老師是(2x-2)歲,(2x-2)+(x-2)=44,x=16

4樓:匿名使用者

1. 設取28元的x千克,取42元的y千克。

則有 28x+42y=34×14...1)x+y=14...2)

解得:x=8

y=6答:取28元的8千克,取42元的6千克。

5樓:網友

1 x+y=14

1/28x+1/42y=1/34

2 自己做。

這麼簡單。小孩子偷懶是吧。

這樣可不好哦。

6樓:匿名使用者

200*3/5=120(個)200*2/5=80(個)

答:足球80個,排球120個。其他題等一下。

7樓:血色浪漫

小孩子偷懶是吧。

這樣可不好哦。

怎樣才能做好應用題?

怎樣讓學生做好百分數的應用題?

8樓:知足的快樂

為了學好分數、百分數應用題,必須做到以下幾方面:

① 具備整數應用題的解題能力.解決整數應用題的基本知識,如概念、性質、法則、公式等仍廣泛應用於分數、百分數應用題;

② 在理解、掌握分數的意義和性質的前提下靈活運用;

③ 學會畫線段示意圖.線段示意圖能直觀地揭示「量」與「百分率」之間的對應關係,發現量與百分率之間的隱蔽條件,可以幫助我們在複雜的條件與問題中理清思路,正確地進行分析、綜合、判斷和推理;

④ 學會多角度、多側面思考問題的方法.分數、百分數應用題的條件與問題之間的關係變化多端,單靠統一的思路模式有時很難找到正確解題方法.因此,在解題過程中,要善於掌握對應、假設、轉化等多種解題方法,不斷地開拓解題思路.

如果要公式的話,我這也有。

【求分率、百分率問題的公式】

比較數÷標準數=比較數的對應分(百分)率;

增長數÷標準數=增長率;

減少數÷標準數=減少率。

或者是兩數差÷較小數=多幾(百)分之幾(增);

兩數差÷較大數=少幾(百)分之幾(減)。

【增減分(百分)率互求公式】

增長率÷(1+增長率)=減少率;

減少率÷(1-減少率)=增長率。

比甲丘面積少幾分之幾?」

解 這是根據增長率求減少率的應用題。按公式,可解答為。

百分之幾?」

解 這是由減少率求增長率的應用題,依據公式,可解答為。

【求比較數應用題公式】

標準數×分(百分)率=與分率對應的比較數;

標準數×增長率=增長數;

標準數×減少率=減少數;

標準數×(兩分率之和)=兩個數之和;

標準數×(兩分率之差)=兩個數之差。

【求標準數應用題公式】

比較數÷與比較數對應的分(百分)率=標準數;

增長數÷增長率=標準數;

減少數÷減少率=標準數;

兩數和÷兩率和=標準數;

兩數差÷兩率差=標準數;

9樓:紅河

百分數就是幾分之幾的分數的變體。實際上百分數就是就一個數是另一個數的幾分之幾,然後把幾分之幾改寫成百分數。如5/20=

三年級數學幾分之幾應用題怎麼做

10樓:網友

計算方法:

(1)分子和整數相乘,所得的積作分子,分母不變;

(2)計算結果要化簡為最簡分數。

計算方法:(1)分子乘分子,所得的積作為分子;分母乘分母,所得的積作為分母;

(2)計算結果要化簡為最簡分數。

為了簡便,計算過程能約分的,可以先約分,再計算。(書寫格式:把分子和分母能約分的數劃去,分別在它們的上下方寫出約分後的數字。)

分數計算方法:

1、與整數運算中的「湊整法」相同,在分數運算中,充分利用四則運演算法則和運算律(如交換律、結合律、分配律),使部分的和、差、積、商成為整數、整十數。從而使運算得到簡化。

2、在一個只有加減法運算的算式中,給算式的一部分添上括號,如果括號前面是加號,那麼括號裡面的運算子號都不改變;如果括號前面是減號,那麼括號裡面的運算子號都要改變,即加號變減號,減號變加號。

3、在一個有括號的加減法運算的算式中,將算式中的括號去掉,如果括號前面是加號,那麼去掉括號後,括號裡面的運算子號都不改變;如果括號前面是減號,那麼括號裡面的運算子號都要改變,即加號變減號,減號變加號。

11樓:yzwb我愛我家

舉例:三(1)班男生佔全班人數的11分之9,女生佔全班人數的幾分之幾?

解:1-11分之9=11分之2

答:女生佔全班人數的11分之2。

王老師買了一張紅色膠紙,做小旗用去這張紙的9分之2,做小紅花用去這張紙的9分之3,一共用去這張紙的幾分之幾?還剩下這張紙的幾分之幾?

解:9分之2+9分之3=9分之5

1-9分之5=9分之4

答:一共用去這張紙的9分之5,還剩下這張紙的9分之4。

12樓:網友

三年級的數學,1/3的應用題,應該是,看這個解題的方式。

小學六年級的分數除法應用題怎麼做?

13樓:匿名使用者

一步計算的分數乘除法應用題可根據「求一個數的幾分之幾是多少」和「已知一個數的幾方之幾是多少,求這個數」來解答。

兩步計算的應用題的解題關鍵是先確定單位「1」,既找出標準量,接著尋找具體數量的對應分率。在列式時,首先看錶示單位1的數量是否知道,如果表示單位「1」的數量是已知的,則該題用乘法計算,否則該題用除法計算。

例如:某肥皂廠九月份生產肥皂35萬箱,十月份生產的肥皂比九月份多2/7,十月份生產肥皂多少萬箱?

分析:「十月份生產的肥皂比九月份多2/7」表示把九月份生產的肥皂看作單位「1」,十月份生產的肥皂就是九月份的(1+2/7),表示單位「1」的數量是已知的,所以用乘法計算,即:35*(1+2/7)。

又如:世界上最高的動物是長勁鹿。有一隻長勁鹿高5米,比一頭大象還要高2/3,這頭象高多少米?

分析:長勁鹿「比一頭大像還要高2/3」表示把大象看作單位「1」,長勁鹿的高度是大象的(1+2/3),即5米的對應分率為(1+2/3),表示單位「1」的數量未知,所以用除法計算,即5/(1+2/3)。

在解答分數乘除法應用題時還應注意一題多解,特別要注意引入方程解法。傳統的分數除法應用題教學只講算術解法,學生難以理解和掌握,往往死記結語,費時多,效果差。由於用方程解答兩步應用題時,仍強調先想未知量相當於單位「1」的幾分之幾,來溝通算術解法和方程解法的聯絡。

在教學中有的教師容易錯誤地把方程解法作為過渡到算術解法的一種手段,最後仍以掌握算術解法為主,使學生容易忽視方程解法。這樣不利於發展學生的思維能力,也不能為進一步學習打下良好的基礎。在解答分數應用題時,對於含有「已知一個數的幾分之幾是多少,求這個數」與含有「求這個數的幾分之幾是多少的兩步」應用題的解法相對應,先按照列方程解整應用題的方法,找出數量間的相等關係,列出方程並求解。

在此基礎上出現算術解法,並且注意說明算術解法與方程解法的聯絡與區別。

例如:小紅家買來一袋大米,吃了5/8,還剩15千克。買來大米多少千克?

分析:這道題應把買來大米的重量看作單位「1」。買來大米的重量不知道,可以用x代替,列方程解答。等量關係為:買來大米的重要 — 吃了的重要 剩下的重量。

我家女兒上小學四年級,數學應用題老是不會做,該怎麼辦呢?

14樓:狗頭神教牛蛙

不會就不會唄,那麼大壓力幹嘛,你自己感覺你多了那麼多書有多大作用?好好教她做人,養成好的習慣,修養,我感覺比那些東西重要多了。

15樓:花葬在路上

你要每天給他多多輔導一下老師當天講的課,每次講的話要耐心點,一次不行就多講幾次,主要做的就是解析數學應用題,在結合生活多講幾個例子!

怎麼把分數應用題學好,分數應用題該怎麼做才,難啊

小鈴鐺 要學好分數應該題,首先找準單位1,並要掌握好分數應該題的解題思路。分數乘法應用題 單位 1 已知,用乘法解答 單位 1 所求量佔單位 1 的幾分之幾。所求量 分數乘法應用題 單位 1 未知,用除法或者列方程解答 已知量 已知量所對應的分率 單位 1 方程 一般設單位 1 為x。x 已知量所對...

21題應用題怎麼做?第1題的應用題怎麼做?

設甲成本x 乙則是500 x 根據題意。甲的定價 1 50 x 乙的定價 1 40 500 x 1 50 x 1 40 500 x 730解得x 300 甲的實際定價是 1 50 x 90 利潤是 1 50 x 90 x 105乙的實際定價是 1 40 500 x 90 1 40 500 x 90 ...

怎樣提高數學應用題

數學是很簡單的東西,你不要把他想的很難,理科的東西里有一部分是背的,不過有很大一部分是要理解的。買一本帶例題的習題集,認真的,用心的去思考裡面你不會的每個問題,從例題和課本中找尋答案,當然,有些你要問,沒人能問的時候你就要狠勁的去想。另外給你幾個方法,一,正推法,把所有條件列出來,一步步逼近答案。簡...