高等數學中無窮級數收斂的題目,高等數學中幾道無窮級數的題目

時間 2021-07-09 17:59:14

1樓:

根據這個極限,很自然聯想到比值法,但是這裡的級數沒有點明是正項級數。根據極限的保號性,當n充分大時,u(n+1)/un>0,所以un>0或un<0。所以,去掉前有限項後un恆大於零或小於零。

如果un>0,由比值法直接得到級數發散。如果un<0,考慮通項是-un的正項級數,其發散,所以原級數也發散。

2樓:匿名使用者

寫了一堆,竟然沒了,哎,重新寫

我看了你的問題,你也問在點兒上了,其實那個標準答案寫的都有點多餘

為什麼別人會想到加絕對值號呢??

恩,你有名沒有發現,書上專門講了一節級數收斂的判別法則——是專門針對正項級數!!!

對於一般的常數項級數怎麼辦??

任何一個級數,把通項加絕對值是不是就變成正項級數了!

那麼對這個正項級數,你用比值判別法,可以判斷出正項級數收斂,即這個級數就是絕對收斂的!

而書上有一個定理,“如果一個級數絕對收斂,那麼他本身也肯定是收斂的”!

嘿嘿,書上在講完正項級數判別法後,有了這麼個定理,你就可以通過把通項加絕對值變成正項級數,然後用正項級數判別法,判斷原級數是是否絕對收斂,如果絕對收斂,那本身必然收斂,如果不是絕對收斂的,那麼也不能說明原級數就不收斂,只是你要想別的辦法嘍——}

高等數學中幾道無窮級數的題目 10

3樓:

1、相鄰的兩項應該抄是un與u(n+1)比較,現在襲是把bai奇偶項分開了,所以un>

duu(n+1)就變成了兩個

zhi式子:n取偶數時dao,u2n>u(2n+1);n取奇數時,u(2n-1)>u2n。所以要驗證的式子變成了u(2n-1)>u2n>u(2n+1)。

2、教材上給出了冪級數的收斂性的一個重要的定理-abel定理,∑anx^n在x=a處收斂,則|x|<|a|內冪級數絕對收斂。只要理解了這個定理,就會明白r≥2。

第二個問題還是應用了abel定理,r≥2,t=1在收斂區間內。

3、根據傅立葉級數的收斂定理,連續點上,傅立葉級數收斂於函式值。

4樓:匿名使用者

太多了,分開提問才會有人回答。

求教高等數學題目(關於無窮級數)

5樓:

注意:∑an收斂,但∑a2n,∑a(2n+1)不一定收斂。例如∑(-1)^n/n。

a可以用這個定理判斷是正確的。

c不能用這個定理。我考慮的是用級數的定義,假設級數∑an的前n項和是sn,sn→a。c中級數的前n項和是tn,則tn=(a2+a3)+(a4+a5)+……+(a2n+a(2n+1))=s(2n+1)-a1→a-a1,所以c成立。

b和d都是錯誤的。

b的反例:an=(-1)^n/(√n),則b中級數是∑[1/n+1/(n+1)]是發散的。

6樓:匿名使用者

級數(c)其實就是原級數,當然收斂。

7樓:匿名使用者

同學,定理上針對的是兩個不同的函式項級數un和vn,並不是an 和 a(n+1)

8樓:

你這個符號太難理解了!

高等數學中無窮級數收斂判別法的問題

第一個 貌似書上印的這個是個推論吧。記不太清總之這個定理是說大的收斂則小的級數也收斂,小的發散則大的也發散。反之不成立。你就這樣記。第二個 你可以去看看高數上冊對無窮小的定義,老師的課堂筆記也翻一翻吧第三個 收斂級數中部分項構成的新級數也是收斂的,就是相同的斂散性質,這個貌似是書上的定理吧,你翻翻課...

高等數學,無窮級數

尹六六老師 根據阿貝爾定理,可以得到如下推論 如果冪級數不是僅在x 0點收斂,也不是在 內收斂,則一定存在一個正數r,當 x r時,冪級數發散。這個r稱為冪級數的收斂半徑。所以,你求出 lim u n 1 u n lim a n 1 a n x 後,令lim a n 1 a n 根據比值審斂法,x ...

高等數學無窮級數問題,高數無窮級數問題 當n趨向於無窮時,1 n不是趨向於0嗎,為什麼1 n的無無窮級數是發散的???

花開丿丶敗下 這個用到了一個常用的函式關係 在x 0時,x sinx 也就是sin 1 3 n 1 3 n 由於sin 1 3 n 在n增大時無限趨近於0,且2 n 0,兩邊同乘以2 n,等式關係不變,因此 0 2 n sin 1 3 n 2 n 1 3 n容易得出 2 n 1 3 n 2 3 n ...