什麼的導數是1 1 x2 ,1 1 x 2 的導數?

時間 2021-08-30 11:18:37

1樓:小小芝麻大大夢

arctanx+c的導數是1/(1+x^2)。c為常數。

解答過程如下:

f(x)=arctanx+c,令y=arctanx;則x=tany因為f'(x)=(arctanx)'+0

=1/(tany)'

=1/(siny/cosy)'

=1/[(cos^2y+sin^2y)/cos^2y]=1/(1+tan^2y)

=1/(1+x^2)

擴充套件資料:商的導數公式:

(u/v)'=[u*v^(-1)]'

=u' * [v^(-1)] +[v^(-1)]' * u= u' * [v^(-1)] + (-1)v^(-2)*v' * u

=u'/v - u*v'/(v^2)

通分,易得

(u/v)=(u'v-uv')/v²

常用導數公式:

1.y=c(c為常數) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna,y=e^x y'=e^x4.y=logax y'=logae/x,y=lnx y'=1/x5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^2

2樓:

f(x)=arctanx+c

令y=arctanx;則x=tany

因為f'(x)=(arctanx)'+0

=1/(tany)'

=1/(siny/cosy)'

=1/[(cos^2y+sin^2y)/cos^2y]=1/(1+tan^2y)

=1/(1+x^2)

有不懂歡迎追問

3樓:小小小雨

反正切啊,arctanx,公式來的啊,一定要記住

1/(1+x^2)的導數?

4樓:假面

1/(1+x^2)的導數:-2x/(1+x^2)²解答過程如下:

[1/(1+x^zhi2)]'

=[1'(1+x^2)-1(1+x^2)']/(1+x^2)²=-2x/(1+x^2)²

5樓:東方欲曉

用複合函式求導法:

[1/(1+x^2)]' = -2x/[(1+x^2)]^2

什麼的導數是(a^2+x^2)^(1/2)

6樓:姚澄邰雪帆

因為這個是複合函式求導問題,所以

這個函式的導數就應該是

1/2(a^+x^2)^-1/2再乘以

根號內a²+x²的導數。

最後結果=1/2(a^+x^2)^-1/2·2x=x/√a^2+x^2

7樓:茹翊神諭者

求一下原函式即可

答案如圖所示

導數為1/(1+x^2)*(1+x^2)的原函式是什麼?

8樓:我薇號

解:y'=1/x^2-x=x^(-2)-x原函式=積分y'dx

=積分(x^(-2)-x)dx

=x^(-2+1)/(-2+1)-1/2x^2+c=x^(-1)/(-1)-1/2x^2+c=-x^(-1)-1/2x^2+c

答:原函式為-x^(-1)-1/2x^2+c。

什麼的導數是x,什麼數的導數是x

愛蜻蜓點水 導數 derivative 是微積分中的重要基礎概念。當函式y f x 的自變數x在一點x0上產生一個增量 x時,函式輸出值的增量 y與自變數增量 x的比值在 x趨於0時的極限a如果存在,a即為在x0處的導數,記作f x0 或df x0 dx。導數是函式的區域性性質。一個函式在某一點的導...

11 x 2 1的導數是多少,1 1 x 2 1 2 的導數是多少

劉傻妮子 可以理解為 1 x 的 1 2 次冪來求導。按照求導公式就可以啦。 x 1 x 2 3 2 1 1 x 2 的導數? 假面 1 1 x 2 的導數 2x 1 x 2 解答過程如下 1 1 x zhi2 1 1 x 2 1 1 x 2 1 x 2 2x 1 x 2 東方欲曉 用複合函式求導法...

導數的定義是什麼?y 1 1 x 的導數怎麼求

合併這兩句,就是你想用導數的定義求這個函式吧 導數定義f x lim h 0 f x h f x h f a lim x a f x f a x a 就是函式在x a處的導數,也即曲線在該點的斜率。y 1 1 x y lim h 0 f x h f x h lim h 0 1 1 x h 1 1 x...