什麼是代數,代數是什麼?

時間 2021-09-02 19:29:10

1樓:夜璇宸

代數是研究數、數量、關係、結構與代數方程(組)的通用解法及其性質的數學分支。

初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什麼,以及瞭解變數的概念和如何建立多項式並找出它們的根。

代數的研究物件不僅是數字,而是各種抽象化的結構。在其中我們只關心各種關係及其性質,而對於「數本身是什麼」這樣的問題並不關心。常見的代數結構型別有群、環、域、模、線性空間等。

擴充套件資料

一、代數學的起源

代數學英文名稱algebra**於9世紀阿拉伯數學家花拉子米的重要著作的名稱。該著作名為「ilm al-jabr wa'1 muqabalah」,原意是「還原與對消的科學」。

這本書傳到歐洲後,簡譯為algebra。清初曾傳入中國兩卷無作者的代數學書,被譯為《阿爾熱巴拉新法》,後改譯為《代數學》。

二、代數的介紹

在古代,當算術裡積累了大量的,關於各種數量問題的解法後,為了尋求有系統的、更普遍的方法,以解決各種數量關係的問題,就產生了以解代數方程的原理為中心問題的初等代數。

代數(algebra)是由算術(arithmetic)演變來的,這是毫無疑問的。至於什麼年代產生的代數學這門學科,就很不容易說清楚了。

比如,如果你認為「代數學」是指解bx+k=0這類用符號表示的代數方程的技巧。這種「代數學」是在十六世紀才發展起來的。

2樓:

由數和表示數的字母經有限次加、減、乘、除、乘方和開方等代數運算所得的式子,或含有字母的數學表示式稱為代數式。例如:ax+2b,-2/3,b^2/26,√a+√2等。

注意: 1、不包括等於號(=、≡)、不等號(≠、≤、≥、<、>、≮、≯)、約等號≈。 2、可以有絕對值。

例如:|x|,|-2.25| 等。

3樓:上海千實

代數是研究數、數量、關係與結構的數學分支。初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什麼,以及瞭解變數的概念和如何建立多項式並找出它們的根。

代數的研究物件不僅是數字,而是各種抽象化的結構。在其中我們只關心各種關係及其性質,而對於「數本身是什麼」這樣的問題並不關心。常見的代數結構型別有群、環、域、模、線性空間等。

4樓:神遊飛天

設v是數域k上的線性空間,則l(v)是k上的代數。其中l(v)是關於v—>v的線性對映全體

5樓:陽城幹部

用字母代替數字的運算方法。

代數是什麼?

6樓:歡歡喜喜

代數是研究數、數量、關係、結構與代數方程(組)的通用解法及其性質的數學分支。初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什麼,以及瞭解變數的概念和如何建立多項式並找出它們的根。

代數的研究物件不僅是數字,而是各種抽象化的結構。在其中我們只關心各種關係及其性質,而對於「數本身是什麼」這樣的問題並不關心。常見的代數結構型別有群、環、域、模、線性空間等。

7樓:青州大俠客

代數是一門數學課程,有初等代數和高等代數。以x,y,z等字母代替數字。

8樓:匿名使用者

代數是數學裡邊的一門科目,大概在20年前,初中的時候數學就分為代數和幾何兩大類,現在好像不區分了,只是統稱為數學

9樓:夜殤灬獨家記憶

代數是由算數演變過來的,在算數的基礎上開發的更系統,更普遍的一種數學方法,對現在數學產生了深淵的影響

10樓:尋他千千

代數是數學的一門分支,主要研究特定的某些數字關係。比如線性代數。

11樓:qq微波爐

代數是數學裡的一個門類。分為初等代數、線性代數、高等代數。

12樓:匿名使用者

代數是數學學科的一類

13樓:匿名使用者

代數就是找個英文字母來代替那個非常難求的未知數.比如說a-b=2,那麼能滿足a-b=2 的太多了,4-2=2,10-8=2,976-974=2,還有,可是又不是讓你求什麼4,8,10,976,974 這些具體的數,而是只要是得2,那麼就算完成了,所.

14樓:琉璃蘿莎

非空集合s上的代數運算,指笛卡爾積s*s->s的對映

代數是什麼意思

15樓:我是一個麻瓜啊

代數是研究數、數量、關係、結構與代數方程(組)的通用解法及其性質的數學分支。

初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什麼,以及瞭解變數的概念和如何建立多項式並找出它們的根。

代數的研究物件不僅是數字,而是各種抽象化的結構。在其中我們只關心各種關係及其性質,而對於「數本身是什麼」這樣的問題並不關心。常見的代數結構型別有群、環、域、模、線性空間等。

16樓:demon陌

代數釋義:數學的分支學科。通過用字母代表數進行運算。能簡明地表示數量關係的普遍性,可以解決用算術難以解決的問題。

代數是數學的一個分支。傳統的代數用有字元 (變數) 的表示式進行算術運算,字元代表未知數或未定數。如果不包括除法 (用整數除除外),則每一個表示式都是一個含有理係數的多項式。

例如: 1/2 xy +1/4z-3x+2/3. 一個代數方程式是通過使多項式等於零來表示對變數所加的條件。

如果只有一個變數,那麼滿足這一方程式的將是一定數量的實數或複數——它的根。一個代數數是某一方程式的根。

17樓:白

代數的意思為研究數、數量、關係、結構與代數方程(組)的通用解法及其性質的數學分支。

代數讀音:dài shù。

釋義:是研究數、數量、關係、結構與代數方程(組)的通用解法及其性質的數學分支。

詞類:名詞。

例句:該模型計算簡單,通過代數運算可以得到具有較高精度的磁力計算結果。

代數是研究數、數量、關係、結構與代數方程(組)的通用解法及其性質的數學分支,其中將算術關係加以概括並用代表數字的字母符號、變數或其它數學實體來**(如向量和矩陣),字母符號是結合起來的,尤指在按照指定的規律形成方程的情況下。

初等代數一般在中學時講授,介紹代數的基本思想:研究當我們對數字作加法或乘法時會發生什麼,以及瞭解變數的概念和如何建立多項式並找出它們的根。代數的研究物件不僅是數字,而是各種抽象化的結構。

在其中我們只關心各種關係及其性質,而對於「數本身是什麼」這樣的問題並不關心。常見的代數結構型別有群、環、域、模、線性空間等。

中文名:代數。

外文名:algebra。

所屬學科:數學。

學科特點:抽象。

重要理論:伽羅瓦理論。

常見型別:對稱代數、張量代數。

介紹:在古代,當算術裡積累了大量的,關於各種數量問題的解法後,為了尋求有系統的、更普遍的方法,以解決各種數量關係的問題,就產生了以解代數方程的原理為中心問題的初等代數。

代數(algebra)是由算術(arithmetic)演變來的,這是毫無疑問的。至於什麼年代產生的代數學這門學科,就很不容易說清楚了。比如,如果你認為「代數學」是指解bx+k=0這類用符號表示的代數方程的技巧。

這種「代數學」是在十六世紀才發展起來的。

定義:代數是數學的一個分支。傳統的代數用有字元 (變數) 的表示式進行算術運算,字元代表未知數或未定數。

如果不包括除法 (用整數除除外),則每一個表示式都是一個含有理係數的多項式。例如: 1/2 xy +1/4z-3x+2/3.

一個代數方程式 (參見equation)是通過使多項式等於零來表示對變數所加的條件。如果只有一個變數,那麼滿足這一方程式的將是一定數量的實數或複數——它的根。一個代數數是某一方程式的根。

代數數的理論——伽羅瓦理論是數學中最令人滿意的分支之一。建立這個理論的伽羅瓦(evariste galois,1811-32)在21歲時死於決鬥中。他證明了不可能有解五次方程的代數公式。

用他的方法也證明了用直尺和圓規不能解決某些著名的幾何問題(立方加倍,三等分一個角)。多於一個變數的代數方程理論屬於代數幾何學,抽象代數學處理廣義的數學結構,它們與算術運算有類似之處。參見,如:

 布林代數(boolean algebra);群 (gro-ups);矩陣(matrices);四元數(qua-ternions );向量(vectors)。這些結構以公理 (見公理法 axiomaticmethod) 為特徵。特別重要的是結合律和交換律。

代數方法使問題的求解簡化為符號表示式的操作,已滲入數學的各分支。

設k為一交換體. 把k上的向量空間e叫做k上的代數,或叫k-代數,如果賦以從e×e到e中的雙線性對映。換言之,賦以集合e由如下三個給定的法則所定義的代數結構:

——記為加法的合成法則(x,y)↦x+y;

——記為乘法的第二個合成法則(x,y)↦xy;

——記為乘法的從k×e到e中的對映(α,x)↦αx,這是一個作用法則;

這三個法則滿足下列條件:

a) 賦以第一個和第三個法則,e則為k上的一個向量空間;

b) 對e的元素的任意三元組(x,y,z),有

x(y+z)=xy+xz(y+z)x=yx+zx;

c)對k的任一元素偶(α,β)及對e的任一元素偶(x,y),有(αx)(βy)=(αβ) (xy)。

設a為一非空集合. 賦予從a到k中的全體對映之集ℱ(a,k)以如下三個法則:

則ℱ(a, k)是k上的代數, 自然地被稱為從a到k中的對映代數.當a=n時, 代數ℱ(a,k)叫做k的元素序列代數。

無論是在代數還是在分析中,代數結構都是最常見到的結構之一。十九世紀前半葉末,隨著哈密頓四元數理論的建立,非交換代數的研究已經開始。 在十九世紀下半葉,隨著m.

s.李的工作,非結合代數出現了。到二十世紀初,由於放棄實數體或複數體作為運算元域的限制,代數得到了重大擴充套件。

與外代數,對稱代數,張量代數,克利福德代數等一起,代數結構在多重線性代數中也建立了起來。

18樓:518姚峰峰

代數一、拼音: dài shù

二、代數意思:

1、數學的一個分支,其中將算術關係加以概括並用代表數字的字母符號、變數或其它數學實體來**(如向量和矩陣),字母符號是結合起來的,尤指在按照指定的規律形成方程的情況,一種利用符號來代替未知數,進而加以運算而解決問題的方法。

2、代數學的簡稱。

三、例句:

本文研究了含么可換環上一般線性李代數的子代數結構。

完全分配交換子空間格代數是一類重要的非自伴、自反運算元代數。

算術和初等代數中普通的數通稱純量。

代數整數環的每個子環都不是歸納環。

數學班從幼稚園至高中幾何班,代數班,和微積分先修班。

代數的來歷是什麼

櫠yz洧卟 代數是研究數字和文字的代數運算理論和方法,更確切的說,是研究實數和複數,以及以它們為係數的多項式的代數運算理論和方法的數學分支學科。初等代數是更古老的算術的推廣和發展。在古代,當算術裡積累了大量的,關於各種數量問題的解法後,為了尋求有系統的 更普遍的方法,以解決各種數量關係的問題,就產生...

代數的重點公式是什麼

徐天來 平方差 a b a b a 2 b 2 完全平方 a b 2 a 2 2ab b 2 x 2 p q x pq x p x q 圓錐體積是等底等高 圓柱體的1 3.二次根式 a b ab a c b c a b c.a n b n c 則n a bc c 1 正圓球體積 4 3派r立方 或1...

什麼是代數精確度

喵嗚的小可愛哇 求積公式對於次數不超過m的多項式均能準確地成立,但對於m 1次多項式就不準確成立,則稱該求積公式具有m次代數精度。等代數一般在中學時講授,介紹代數的基本思想 研究當我們對數字作加法或乘法時會發生什麼,以及瞭解變數的概念和如何建立多項式並找出它們的根。代數的研究物件不僅是數字,而是各種...