1樓:假面
非退化矩陣就是行列式不等於零。
若n階矩陣a的行列式|a|≠0,n階方陣a是非退化的充要條件為a是可逆矩陣。
一個n×n矩陣是非退化的充要條件是它的秩等於n。設a,b都是數域f上的n×n矩陣,矩陣ab為退化的充要條件是a,b中至少有一個是退化的。
2樓:延濃綺
比如有一題,-4x1x2+2x1x3+2x2x3,解答是先做非退化線性替換令x1=y1+y2;x2=y1-y2;x3=y3.我不明白這個用y替換x1,x2,x3的替換式是怎麼來的,求解答.另外二次型的標準型是指表示式中只含有2次方的項嗎?
原二次型中無平方項
這個替換是為了先湊出平方項
因為二次型中有 x1x2,所以令 x1=y1+y2;x2=y1-y2;x3=y3.是的.
3樓:
非退化矩陣就是行列式不等於零。
1、矩陣是高等代數學中的常見工具,也常見於統計分析等應用數學學科中。在物理學中,矩陣於電路學、力學、光學和量子物理中都有應用;電腦科學中,三維動畫製作也需要用到矩陣。 矩陣的運算是數值分析領域的重要問題。
2、將矩陣分解為簡單矩陣的組合可以在理論和實際應用上簡化矩陣的運算。對一些應用廣泛而形式特殊的矩陣,例如稀疏矩陣和準對角矩陣,有特定的快速運算演算法。關於矩陣相關理論的發展和應用,請參考矩陣理論。
在天體物理、量子力學等領域,也會出現無窮維的矩陣,是矩陣的一種推廣。
用配方法化下列二次型為標準型,並求所作的非退化線性變換 10
4樓:匿名使用者
^原題中 f = 2x1x2 - 6x2x3 + 2x1x2 應為 f = 2x1x2 - 6x2x3 + 2x1x3 吧。
令 x1 = y1+y2, x2 = y1-y2, x3 = y3
則 f = 2x1x2 - 6x2x3 + 2x1x3
= 2(y1)^專2 - 2(y2)^2 - 6(y1-y2)y3 + 2(y1+y2)y3
= 2(y1)^2 - 2(y2)^2 - 4y1y3 + 8y2y3
= 2(y1-y3)^2 - 2(y2)^2 - 2(y3)^2 + 8y2y3
= 2(y1-y3)^2 - 2(y2-2y3)^2 + 10(y3)^2
= 2(z1)^2 - 2(z2)^2 + 10(z3)^2
可逆線性屬變換是
z1 = y1-y3 = (x1+x2)/2 - x3
z2 = y2-2y3 = (x1-x2)/2 - 2y3
z3 = y3 = x3
矩陣對應的線性變換是怎麼來的,矩陣與線性變換之間的轉換
開心每億刻 書中給的定義是變數x1 xn到y1 yn的變換,這個是二階矩陣,所以x1.x2,y1,y2可以用平面座標系中的點表示,x1其實是y1表示p1橫座標,y1其實是y2表示p1縱座標,書中這裡太突兀了,冷不丁的把符號換了讓人 御含靈 矩陣是a,相當於把向量用矩陣乘 x1 x y1 a y 改秋...
這個線性代數怎麼做?是用,這個線性代數怎麼做?是用PAP 相應的對角矩陣麼?
常見考察由a求特徵值,特徵向量。而本題屬於由特徵值,特徵向量求a。分析 a p1,p2,p3 ap1,ap2,ap3 1p1,2p2,3p3 p1,p2,p3 diag 1,2,3 則 a p1,p2,p3 diag 1,2,3 p1,p2,p3 1 解答 已知 p1,p2,p3 已知diag 1,...
哪位大神指導下這道線性代數題怎麼做
定理 初等矩陣p左乘矩陣a,所得矩陣pa就是矩陣a作一次相應的行變換 初等矩陣p右乘矩陣a,所得矩陣ap就是矩陣a作一次相應的列變換 a b只經過行變換 a的第1行加到第3行 a的1 2兩行互換 所以b p1 p2a p1p2a 初高中本科數學藏經閣 首先知什麼是初等矩陣,然後知道它的性質。初等矩陣...