怎樣求高一數學函式的值域,高一數學函式值域的求法

時間 2021-09-08 02:47:45

1樓:匿名使用者

求 函式值域的幾種常見方法

1.直接法:利用常見函式的值域來求

一次函式y=ax+b(a 0)的定義域為r,值域為r;

反比例函式 的定義域為,值域為;

二次函式 的定義域為r,

當a>0時,值域為;當a<0時,值域為.

例1.求下列函式的值域

① y=3x+2(-1 x 1) ② ③ ④

解:①∵-1 x 1,∴-3 3x 3,

∴-1 3x+2 5,即-1 y 5,∴值域是[-1,5]

②∵ ∴

即函式 的值域是

③ ④當x>0,∴ = ,

當x<0時, =-

∴值域是 [2,+ ).(此法也稱為配方法)

函式 的影象為:

2.二次函式比區間上的值域(最值):

例2 求下列函式的最大值、最小值與值域:

① ;解:∵ ,∴頂點為(2,-3),頂點橫座標為2.

①∵拋物線的開口向上,函式的定義域r,

∴x=2時,ymin=-3 ,無最大值;函式的值域是.

②∵頂點橫座標2 [3,4],

當x=3時,y= -2;x=4時,y=1;

∴在[3,4]上, =-2, =1;值域為[-2,1].

③∵頂點橫座標2 [0,1],當x=0時,y=1;x=1時,y=-2,

∴在[0,1]上, =-2, =1;值域為[-2,1].

④∵頂點橫座標2 [0,5],當x=0時,y=1;x=2時,y=-3, x=5時,y=6,

∴在[0,1]上, =-3, =6;值域為[-3,6].

注:對於二次函式 ,

⑴若定義域為r時,

①當a>0時,則當 時,其最小值 ;

②當a<0時,則當 時,其最大值 .

⑵若定義域為x [a,b],則應首先判定其頂點橫座標x0是否屬於區間[a,b].

①若 [a,b],則 是函式的最小值(a>0)時或最大值(a<0)時,再比較 的大小決定函式的最大(小)值.

②若 [a,b],則[a,b]是在 的單調區間內,只需比較 的大小即可決定函式的最大(小)值.

注:①若給定區間不是閉區間,則可能得不到最大(小)值;

②當頂點橫座標是字母時,則應根據其對應區間特別是區間兩端點的位置關係進行討論.

3.判別式法(△法):

判別式法一般用於分式函式,其分子或分母只能為二次式,解題中要注意二次項係數是否為0的討論

例3.求函式 的值域

方法一:去分母得 (y-1) +(y+5)x-6y-6=0 ①

當 y11時 ∵x?r ∴△=(y+5) +4(y-1)×6(y+1) 0

由此得 (5y+1) 0

檢驗 時 (代入①求根)

∵2 ? 定義域 ∴

再檢驗 y=1 代入①求得 x=2 ∴y11

綜上所述,函式 的值域為

方法二:把已知函式化為函式 (x12)

∵ x=2時 即

說明:此法是利用方程思想來處理函式問題,一般稱判別式法. 判別式法一般用於分式函式,其分子或分母只能為二次式.解題中要注意二次項係數是否為0的討論.

4.換元法

例4.求函式 的值域

解:設 則 t 0 x=1-

代入得5.分段函式

例5.求函式y=|x+1|+|x-2|的值域.

解法1:將函式化為分段函式形式: ,畫出它的圖象(下圖),由圖象可知,函式的值域是.

解法2:∵函式y=|x+1|+|x-2|表示數軸上的動點x到兩定點-1,2的距離之和,∴易見y的最小值是3,∴函式的值域是[3,+ ]. 如圖

兩法均採用「數形結合」,利用幾何性質求解,稱為幾何法或圖象法.

說明:以上是求函式值域常用的一些方法(觀察法、配方法、判別式法、圖象法、換元法等),隨著知識的不斷學習和經驗的不斷積累,還有如不等式法、三角代換法等.有的題可以用多種方法求解,有的題用某種方法求解比較簡捷,同學們要通過不斷實踐,熟悉和掌握各種解法,並在解題中儘量採用簡捷解法.

2樓:匿名使用者

定義域、對應法則、值域是函式構造的三個基本「元件」。平時數學中,實行「定義域優先」的原則,無可置疑。然而事物均具有二重性,在強化定義域問題的同時,往往就削弱或談化了,對值域問題的**,造成了一手「硬」一手「軟」,使學生對函式的掌握時好時壞,事實上,定義域與值域二者的位置是相當的,絕不能厚此薄皮,何況它們二者隨時處於互相轉化之中(典型的例子是互為反函式定義域與值域的相互轉化)。

如果函式的值域是無限集的話,那麼求函式值域不總是容易的,反靠不等式的運算性質有時並不能奏效,還必須聯絡函式的奇偶性、單調性、有界性、週期性來考慮函式的取值情況。才能獲得正確答案,從這個角度來講,求值域的問題有時比求定義域問題難,實踐證明,如果加強了對值域求法的研究和討論,有利於對定義域內函的理解,從而深化對函式本質的認識。

1)化歸法;(2)圖象法(數形結合),

(3)函式單調性法,

(4)配方法,(5)換元法,(6)反函式法(逆求法),(7)判別式法,(8)複合函式法,(9)三角代換法,(10)基本不等式法等

3樓:匿名使用者

這上面有講到

高一數學函式值域的求法

4樓:噓_那誰

1.觀察法

用於簡單的解析式。

y=1-√x≤1,值域(-∞, 1]

y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).

2.配方法

多用於二次(型)函式。

y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1, +∞)

y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)

3. 換元法

多用於複合型函式。

通過換元,使高次函式低次化,分式函式整式化,無理函式有理化,超越函式代數以方便求值域。

特別注意中間變數(新量)的變化範圍。

y=-x+2√( x-1)+2

令t=√(x-1),

則t≤0, x=t^2+1.

y=-t^2+2t+1=-(t-1)^2+2≤1,值域(-∞, 1].

4. 不等式法

用不等式的基本性質,也是求值域的常用方法。

y=(e^x+1)/(e^x-1), (01/(e-1),

y=1+2/(e^x-1)>1+2/(e-1).值域(1+2/(e-1),+∞).

5. 最值法

如果函式f(x)存在最大值m和最小值m.那麼值域為[m,m].

因此,求值域的方法與求最值的方法是相通的.

6. 反函式法

有的又叫反解法.

函式和它的反函式的定義域與值域互換.

如果一個函式的值域不易求,而它的反函式的定義域易求.那麼,我們通過求後者而得出前者.

7. 單調性法

若f(x)在定義域[a, b]上是增函式,則值域為[f(a), f(b)].減函式則值域為

[f(b), f(a)].

5樓:恩暶

很多方法啊。。

像常數分離法 配方法 二元方程式法 判別式法 看影象法。。。。

高中數學必修一函式的值域具體怎麼求

6樓:古運河的

由簡單基本初等函式開始說吧,大前提:研究函式先定義域。1.二次函式求最值:對稱軸,配方法。

2.利用單調性求最值,一些函式在定義域內單調遞增或遞減,且定義域有界,由端點值得最值。

3.換元法。帶根號的把根號當一個整體,有三角函式的,因為三角函式值域的有界性可求最值

4.分數型函式,分離常數求最值,往往令分子出現分母形式,最後出現簡單分式

5.特殊函式最值問題,如對勾函式,有漸近線與最值點。

這些比較常見,關鍵從函式的三大基本構成入手:定義域,對應關係,最後求值域。

高一數學求函式的定義域和值域

7樓:善言而不辯

f(x)的定義域是(0,1)

f(x²-1)的定義域為(x²-1)∈(0,1)→x∈(-1,0)∪(0,1)  不知道f(x)函式表示式 值域是求不出來的(同一個f( ),括號內整體範圍相同)

f(x²-1)的定義域(0,1)(定義域始終指的是自變數(也就是x)的取值範圍),即指x∈(0,1)→x²-1∈(0,1)→f(x)的定義域為x∈(0,1)

8樓:小茗姐姐

沒有具體函式

求不出值域

高一數學判別式法求函式值域怎麼用

9樓:

由於對任意一個實數y,它在函式f(x)的值域內的充要條件是關於x的方程y=f(x)有實數解,因此「求f(x)的值域。」這一問題可轉化為「已知關於x的方程 y=f(x)有實數解,求y的取值範圍。」因此先將y表示成關於x的二次函式,在求解對應一元二次方程有實數根時的y的取值範圍,就是原函式y=f(x)的值域。

你所說的「x屬於r或有一點不可取」是指要先確定原函式的定義域,再結合x的取值範圍求出值域。

(3)原函式定義域為r。y=(2x^2+4x-7)/(x^2+2x+3)=[2(x^2+2x+3)-1]/(x^2+2x+3)=2-1/(x^2+2x+3)=2-1/[(x+1)^2+2].(x+1)^2>=0,(x+1)^2+2>=2,2-1/[(x+1)^2+2]>=2-1/2=3/2

值域為[3/2,+∞)

(4)原函式定義域為r,y=(x+1)/(x^2+x+1),分母乘過去得yx^2+xy+y=x+1,yx^2+(y-1)x+y-1=0,判別式△=(y-1)^2-4*y*(y-)=(y-1)()(4)原函式定義域為r,y=(x+1)/(x^2+x+1),分母乘過去得yx^2+xy+y=x+1,yx^2+(y-1)x+y-1=0,判別式△=(y-1)^2-4*y*(y-)=(y-1)(3y+1)<=0

解得定義域為[-1/3,1]

10樓:匿名使用者

一、判別式法求值域的理論依據

求函式的值域

象這種分子、分母的最高次為2次的分式函式可以考慮用判別式法求值域。

解:由得:

(y-1)x2+(1-y)x+y=0 ①

上式中顯然y≠1,故①式是關於x的一元二次方程

為什麼可以這樣做?即為什麼△≥0,解得y的範圍就是原函式的值域?

我們可以設計以下問題讓學生回答:

當x=1時,y=? (0) 反過來當y=0時,x=?(1)

當x=2時,y=? () 當y=時,x=?(2)

以上y的取值,對應x的值都可以取到,為什麼?

(因為將y=0和y=代入方程①,方程的△≥0)

當y=-1時,x=?

當y=2時,x=?

以上兩個y的值x都求不到,為什麼求不到?

(因為將y的值代入方程①式中△<0,所以無解)

當y在什麼範圍內,可以求出對應的x值?

函式的值域怎樣求?

若將以上問題弄清楚了,也就理解了判別式求值域的理論依據。

二、判別式法求值域的適用範圍

前面已經談到分子、分母的最高次為2次的分式函式可以考慮用判別式法求值域。是不是所有這種類函式都可以用判別式法求值域?

求的值域

從表面上看,此題可以用判別式法求值域。

由原函式得:(y-3)x2+2x+(1-y)=0

=4-4(y-3)(1-y)≥0

即(y-2)2≥0 ∴y∈r

但事實上,當y=3時,可解得x=1, 而x=1時,原函式沒意義。問題出在**呢?

我們仔細觀察一下就會發現,此函式的分子分母均含有因式(x-1),因此原函式可以化簡為,用反函式法可求得,又x≠1代入可得y≠2,故可求得原函式的值域為。

因此,當函式為分子、分母的最高次為2次的分式函式,但分子分母有公因式可約分時,此時不能用用判別式法做,應先約分,再用反函式法求其值域。特別值得注意的是約分後的函式的定義域,如上例中化簡後的函式x≠1,故y≠2。

求函式的值域

此函式為分子、分母的最高次為2次的分式函式,且分子分母無公因式,可不可以用判別式法來求值域呢?

由得:3yx2+(2y-1)x+y+5=0

1)當3y=0,即y=0時,可解得x=5,故y可以取到0

2)當3y≠0時,令△=(2y-1)2-4×3y (y+5)≥0

解得:由1)、2)可得原函式的值域為

上面求得的值域對不對呢?顯然y=在所求得的值域範圍內,但當y=時,可求得x=2,故了限定了自變數x的取值範圍的函式不能用判別式法求值域。

此題可用導數法求得原函式在區間[3,5]內單調遞增,故函式的定義域為。

綜上所述,函式必須同時滿足以下幾個條件才可以用判別式法求其值域:

分子分母的最高次為二次的分式函式;

分子分母無公約數;

未限定自變數的取值範圍。

最後需要說明的是用判別式求值域時,第一步將函式變為整式的形式,第二步一定要看變形後的二次項(x2項)係數是否含有y,若含有y,則要分二次項係數為零和不為零兩種情況進行討論。

利用判別式求值域時應注意的問題

用判別式法求函式的值域是求值域的一種重要的方法,但在用判別式法求值域時經常出錯,因此在用判別式求值域時應注意以下幾個問題:

一、要注意判別式存在的前提條件,同時對區間端點是否符合要求要進行檢驗

錯因:把 代入方程(*)顯然無解,因此 不在函式的值域內。事實上, 時,方程(*)的二次項係數為0,顯然不能用「 」來判定其根的存在情況

二、注意函式式變形中自變數的取值範圍的變化

解中函式式化為方程時產生了增根( 與 雖不在定義域內,但是方程的根),因此最後應該去掉 與 時方程中相應的 值。所以正確答案為 ,且 。

三、注意變形後函式值域的變化

四、注意變數代換中新、舊變數取值範圍的一致性

綜上所述,在用判別式法求函式得值域時,由於變形過程中易出現不可逆得步驟,從而改變了函式得定義域或值域。因此,用判別式求函式值域時,變形過程必須等價,必須考慮原函式得定義域,判別式存在的前提,並注意檢驗區間端點是否符合要求。

高一數學函式值域的求法,高一數學必修一值域的求法,最好具體點

噓 那誰 1 觀察法 用於簡單的解析式。y 1 x 1,值域 1 y 1 x 1 x 2 1 x 1 1,值域 1 1,2.配方法 多用於二次 型 函式。y x 2 4x 3 x 2 2 1 1,值域 1,y e 2x 4e x 3 e x 2 2 7 7,值域 7,3.換元法 多用於複合型函式。通...

高一數學求函式的定義域和值域,高一數學求函式的定義域與值域的常用方法(含答

善言而不辯 f x 的定義域是 0,1 f x 1 的定義域為 x 1 0,1 x 1,0 0,1 不知道f x 函式表示式 值域是求不出來的 同一個f 括號內整體範圍相同 f x 1 的定義域 0,1 定義域始終指的是自變數 也就是x 的取值範圍 即指x 0,1 x 1 0,1 f x 的定義域為...

高一數學用判別式法求函式的值域,高一數學判別式法求函式值域怎麼用

瀧芊 x 1 y 2x ax b yx y 2x ax b y 2 x ax y b 0 y 2 0,y 2 a 4 y 2 y b 0 4y 4 2 b y 8b a 0已知值域 1,3 所以1和3是上面方程的二根y1 y2 2 b 1 3,b 2y1 y2 8b a 4 16 a 4 1 3,1...