1樓:
1)配方法是求二次函式最值最基本的方法
f( x ) = ax^2 + bx + c = a( x + k )^2 + n
2)分離變數法---把常數和含有變數的式子分開比如f( x ) = (2x + 1) / x = 2 + 1 / x
根據1 / x求範圍
還有其他方法,比如根據函式單調性求,利用基本不等式,換元法等等根據具體情況分析
2樓:王子波爾蒂
1、觀察法
2、配方法
3、換元法
4、分離常量法
5、反解法
6、判別式法
3樓:匿名使用者
1.配方法(不多說了)
2.函式有界性(比如sin,cos之類的)3.反解函式(吧y=?
x形式轉化為x=?y形式,利用定義域求值域)4.單調性(看是否單調,是 ,則根據定義域求)5.
正反比例合函式的性質
特別小心定義域
4樓:匿名使用者
1 單調性 2求導 3分離常數 4換元 5△
5樓:閻輝老鴻才
開闢一個數給每個下標變數賦上值
比如找一個最大值
用迴圈來實現
把下標為1的變數分別與從2到最後一個變數逐個比較當有值大於1這個變數時就交換
用迴圈的方法實現
求函式的最大值和最小值的方法。
6樓:藍藍藍
常見的求最值方法有:
1、配方法: 形如的函式
,根據二次函式的極值點或邊界點的取值確定函式的最值.
2、判別式法: 形如的分式函式, 將其化成係數含有y的關於x的二次方程.由於, ∴≥0, 求出y的最值, 此種方法易產生增根, 因而要對取得最值時對應的x值是否有解檢驗.
3、利用函式的單調性 首先明確函式的定義域和單調性, 再求最值.
4、利用均值不等式, 形如的函式, 及≥≤, 注意正,定,等的應用條件, 即: a, b均為正數, 是定值, a=b的等號是否成立.
5、換元法: 形如的函式, 令,反解出x, 代入上式, 得出關於t的函式, 注意t的定義域範圍, 再求關於t的函式的最值. 還有三角換元法, 引數換元法.
6、數形結合法 形如將式子左邊看成一個函式, 右邊看成一個函式, 在同一座標系作出它們的圖象, 觀察其位置關係, 利用解析幾何知識求最值. 求利用直線的斜率公式求形如的最值.
7、利用導數求函式最值2.首先要求定義域關於原點對稱然後判斷f(x)和f(-x)的關係:若f(x)=f(-x),偶函式;若f(x)=-f(-x),奇函式。
如:函式f(x)=x^3,定義域為r,關於原點對稱;而f(-x)=(-x)^3=-x^3=-f(x),所以f(x)=x^3是奇函式.又如:
函式f(x)=x^2,定義域為r,關於原點對稱;而f(-x)=(-x)^2=x^2=f(x),所以f(x)=x^3是偶函式.
擴充套件資料:
一般的,函式最值分為函式最小值與函式最大值。簡單來說,最小值即定義域中函式值的最小值,最大值即定義域中函式值的最大值。
函式最大(小)值的幾何意義——函式影象的最高(低)點的縱座標即為該函式的最大(小)值。
最小值設函式y=f(x)的定義域為i,如果存在實數m滿足:①對於任意實數x∈i,都有f(x)≥m,②存在x0∈i。使得f (x0)=m,那麼,我們稱實數m 是函式y=f(x)的最小值。
最大值設函式y=f(x)的定義域為i,如果存在實數m滿足:①對於任意實數x∈i,都有f(x)≤m,②存在x0∈i。使得f (x0)=m,那麼,我們稱實數m 是函式y=f(x)的最大值。
一次函式
一次函式(linear function),也作線性函式,在x,y座標軸中可以用一條直線表示,當一次函式中的一個變數的值確定時,可以用一元一次方程確定另一個變數的值。
所以,無論是正比例函式,即:y=ax(a≠0) 。還是普通的一次函式,即:
y=kx+b (k為任意不為0的常數,b為任意實數),只要x有範圍,即z《或≤x<≤m(要有意義),那麼該一次函式就有最大或者最小或者最大最小都有的值。而且與a的取值範圍有關係
當a<0時
當a<0時,則y隨x的增大而減小,即y與x成反比。則當x取值為最大時,y最小,當x最小時,y最大。例:
2≤x≤3 則當x=3時,y最小,x=2時,y最大
當a>0時
當a>0時,則y隨x的增大而增大,即y與x成正比。則當x取值為最大時,y最大,當x最小時,y最小。例:
2≤x≤3 則當x=3時,y最大,x=2時,y最小 [3]
二次函式
一般地,我們把形如y=ax^2+bx+c(其中a,b,c是常數,a≠0)的函式叫做二次函式(quadratic function),其中a稱為二次項係數,b為一次項係數,c為常數項。x為自變數,y為因變數。等號右邊自變數的最高次數是2。
注意:“變數”不同於“未知數”,不能說“二次函式是指未知數的最高次數為二次的多項式函式”。
“未知數”只是一個數(具體值未知,但是隻取一個值),“變數”可在一定範圍內任意取值。在方程中適用“未知數”的概念(函式方程、微分方程中是未知函式,但不論是未知數還是未知函式,一般都表示一個數或函式——也會遇到特殊情況),
但是函式中的字母表示的是變數,意義已經有所不同。從函式的定義也可看出二者的差別.如同函式不等於函式關係。
而二次函式的最值,也和一次函式一樣,與a扯上了關係。
當a<0時,則影象開口於y=2x² y=½x²一樣,則此時y 有最大值,且y只有最大值(聯絡影象和二次函式即可得出結論)
此時y值等於頂點座標的y值
當a>0時,則影象開口於y=-2x² y=-½x²一樣,則此時y 有最小值,且y只有最小值(聯絡影象和二次函式即可得出結論)
此時y值等於頂點座標的y值
7樓:匿名使用者
求函式的最大值和最小值的方法,這個題賊請老師給解答一下吧,我答不上來呀,謝謝老師吧!
8樓:麥平樂扶宕
有好多呢,單調性法,配方法,換元法,利用已知函式求值域,還可利用判別式來求,但最普遍的方法是求導.
9樓:萬家燈火
求函式的最大值與最小值的方法需要掌握技巧是很簡單的
10樓:匿名使用者
畫出影象,即可看出最
小值是頂點的縱座標軸,無最小值選畫圖,你會發現y=1/x在(0,+無窮大)是減函式,則在x∈[1,3]上仍是減函式,在x=1時取最大值,在x=3時取最小值,可以通過畫圖,單調性,及求導的方法
11樓:匿名使用者
[小花]求函式最大值和最小值,學霸教你用配方法,8年級數學
12樓:玉麒麟大魔王
求函式最大值和最小值的方法是函式找一數學老師吧。
13樓:米宜章白風
二次函式,主要看二次項係數,大於0,有最小值,小於0,有最大值。
求函式的最大最小值方法可以用公式,4a分子4ac-b方。或者用配方法。
14樓:戎宸在密思
將函式變形為,由於分母,可得函式的定義域為.對分類討論:當時,原式變為,可得得.當時,上式對於任意實數都成立,可得,解出即可.
解:將函式變形為,
分母,函式的定義域為.
當時,原式變為,解得.因此也滿足題意.
當時,上式對於任意實數都成立,因此,
化為,解得,且.
綜上可知:.
當時,函式取得最大值;
當時,函式取得最小值.
本題考查了利用"判別式法"求分式型別函式的最值,考查了推理能力和計算能力,考查了分類討論的思想方法,屬於難題.
15樓:匿名使用者
先像初中一樣,配成頂點式,即y=a(x-k)^2+b
其頂點就是(k,b),然後根據函式的單調性,在頂點處取得最大或最小值。
高等數學中求函式最值的方法
16樓:匿名使用者
方法如下:1。區間端點,接觸函式在區間端點的值。
2。尋找單調區間,如果是極值點則判斷極大值還是極小值,如果不是極值點,則求出在該單調區間上的最值(肯定是在端點處,因為是單調的)3。比較以上的各端點處函式值和極值,最大的為最大值,最小的為極小值。
回答完畢。。希望幫到你。
17樓:匿名使用者
對函式求導當導數值為0,即為最大值或最小值
18樓:匿名使用者
通常高中階段有三種方法:1,數形結合,直接觀察函式影象,使用與2次函式。2,導數,使用導數算出極值,3,均值不等式,注意,1正2定3相等。
19樓:匿名使用者
均值定理還是一個不錯的方法、、 謝謝、
如何求函式的最大值與最小值??
20樓:關鍵他是我孫子
求函式的最大值與最小值的方法:
f(x)為關於x的函式,確定定義域後,應該可以求f(x)的值域,值域區間內,就是函式的最大值和最小值。
一般而言,可以把函式化簡,化簡成為:
f(x)=k(ax+b)²+c 的形式,在x的定義域內取值。
當k>0時,k(ax+b)²≥0,f(x)有極小值c。
當k<0時,k(ax+b)²≤0,f(x)有最大值c。
關於對函式最大值和最小值定義的理解:
這個函式的定義域是【i】
這個函式的值域是【不超過m的所有實數的(集合)】而恰好(至少有)某個數x0,
這個數x0的函式值f(x0)=m,
也就是恰好達到了值域(區間)的右邊界。
同時,再沒有其它的任何數的函式值超過這個區間的右邊界。
所以,我們就把這個m稱為函式的最大值。
21樓:員名酆明智
用導數可以求。
求導數的方法編輯本段
(1)求函式y=f(x)在x0處導數的步驟:
①求函式的增量δy=f(x0+δx)-f(x0)②求平均變化率
③取極限,得導數。
(2)幾種常見函式的導數公式:
①c'=0(c為常數);
②(x^n)'=
nx^(n-1)
(n∈q);
③(sinx)'
=cosx;
④(cosx)'=-
sinx;
⑤(e^x)'
=e^x;
⑥(a^x)'
=(a^x)
*ina
(ln為自然對數)
⑦(inx)'
=1/x(ln為自然對數)
⑧(logax)'=1/(xlna)
,(a>0且a不等於1)
補充一下。上面的公式是不可以代常數進去的,只能代函式,新學導數的人往往忽略這一點,造成歧義,要多加註意。
(3)導數的四則運演算法則:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/
v^2(4)複合函式的導數
複合函式對自變數的導數,等於已知函式對中間變數的導數,乘以中間變數對自變數的導數--稱為鏈式法則。
導數是微積分的一個重要的支柱。牛頓及萊不苨茨對次做出了卓越的貢獻!
22樓:匿名使用者
^就是y=f(x)在x取任意值時,y能達到的最大值。
舉例如:
函式y=-(x-1)^2
不管x取什麼值,總有y<=0,且只有x=1時,y=0按你上面的定義說,就有:
函式y=f(x)=-(x-1)^2的定義域為所有實數,且滿足:
(1)對於任意的x∈r,都有f(x)≤0;
(2)存在x0=1(∈r),使得f(1)=0;
所以0是函式y=f(x))=-(x-1)^2的最大值。
求最大值、最小值一般都是利用配方法,想辦法把函式式變成形如y=a(x+b)^2+c的樣子;
那麼當a<0時,有最大值,且x=-b時取最大值c;
a>0時,有最小值,且x=-b時取最小值c.
函式sinx cosx的最大值,求函式y sinx cosx sinxcosx,x 0, 的最大值和最小值
y sinx cosx 根號2 根號2 2sinx 根號2 2cosx 根號2 sin 4 因為 1 sin x 4 1,則 根號2 y 根號2 最大值為根號2 y sinx cosx 根號2 1 2根號2sinx 1 2根號2cosx 根號2 cos45度sinx sin45度cosx 根號2si...
怎麼求3次函式,一元三次函式最值怎麼求?
施兒宮平文 求三次函式的解析式嗎?根據題目,可以設成三次多項式,然後用待定係數法求解,求出四個引數 求一元三次方程麼?ax 3 bx 2 cx d 0 表示次方運算 原則 就是化3次為2次,因為我們會解2次函式方程,主要方法就是提公因式。題一 如果d 0,則x 0或ax 2 bx c 0題二 分組分...
求三角函式的週期和最值
暖眸敏 1,y 2sin 8x 7 週期t 2 8 4,最大值為2,最小值為 2 2,y 4cos 4x 30 7 週期t 2 4 2,最大值為4 7 11 最小值為 4 7 3 3,y 10tan 9x 7 週期t 9 函式值域為 無最值 4,y 6cot 4x 3 週期t 4 函式值域為 無最值...