1樓:會號你好
1、直接開平方法:
直接開平方法就是用直接開平方求解一元二次方程的方法。用直接開平方法解形如(x-m)2=n (n≥0)的 方程,其解為x=±根號下n+m .
例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11
分析:(1)此方程顯然用直接開平方法好做,(2)方程左邊是完全平方式(3x-4)2,右邊=11>0,所以此方程也可用直接開平方法解。
(1)解:(3x+1)2=7×
∴(3x+1)2=5
∴3x+1=±(注意不要丟解)
∴x=∴原方程的解為x1=,x2=
(2)解: 9x2-24x+16=11
∴(3x-4)2=11
∴3x-4=±
∴x=∴原方程的解為x1=,x2=
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)
先將常數c移到方程右邊:ax2+bx=-c
將二次項係數化為1:x2+x=-
方程兩邊分別加上一次項係數的一半的平方:x2+x+( )2=- +( )2
方程左邊成為一個完全平方式:(x+ )2=
當b^2-4ac≥0時,x+ =±
∴x=(這就是求根公式)
例2.用配方法解方程 3x^2-4x-2=0 (注:x^2是x的平方)
解:將常數項移到方程右邊 3x^2-4x=2
將二次項係數化為1:x2-x=
方程兩邊都加上一次項係數一半的平方:x2-x+( )2= +( )2
配方:(x-)2=
直接開平方得:x-=±
∴x=∴原方程的解為x1=,x2= .
3.公式法:把一元二次方程化成一般形式,然後計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項係數a, b, c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a) , (b^2-4ac≥0)就可得到方程的根。
例3.用公式法解方程 2x2-8x=-5
解:將方程化為一般形式:2x2-8x+5=0
∴a=2, b=-8, c=5
b^2-4ac=(-8)2-4×2×5=64-40=24>0
∴x=[(-b±(b^2-4ac)^(1/2)]/(2a)
∴原方程的解為x1=,x2= .
4.因式分解法:把方程變形為一邊是零,把另一邊的二次三項式分解成兩個一次因式的積的形式,讓兩個一次因式分別等於零,得到兩個一元一次方程,解這兩個一元一次方程所得到的根,就是原方程的兩個根。這種解一元二次方程的方法叫做因式分解法。
例4.用因式分解法解下列方程:
(1) (x+3)(x-6)=-8 (2) 2x2+3x=0
(3) 6x2+5x-50=0 (選學) (4)x2-2( + )x+4=0 (選學)
(1)解:(x+3)(x-6)=-8 化簡整理得
x2-3x-10=0 (方程左邊為二次三項式,右邊為零)
(x-5)(x+2)=0 (方程左邊分解因式)
∴x-5=0或x+2=0 (轉化成兩個一元一次方程)
∴x1=5,x2=-2是原方程的解。
(2)解:2x2+3x=0
x(2x+3)=0 (用提公因式法將方程左邊分解因式)
∴x=0或2x+3=0 (轉化成兩個一元一次方程)
∴x1=0,x2=-是原方程的解。
注意:有些同學做這種題目時容易丟掉x=0這個解,應記住一元二次方程有兩個解。
(3)解:6x2+5x-50=0
(2x-5)(3x+10)=0 (十字相乘分解因式時要特別注意符號不要出錯)
∴2x-5=0或3x+10=0
∴x1=, x2=- 是原方程的解。
(4)解:x2-2(+ )x+4 =0 (∵4 可分解為2 ·2 ,∴此題可用因式分解法)
(x-2)(x-2 )=0
∴x1=2 ,x2=2是原方程的解。
小結:一般解一元二次方程,最常用的方法還是因式分解法,在應用因式分解法時,一般要先將方程寫成一般形式,同時應使二次項係數化為正數。
直接開平方法是最基本的方法。
公式法和配方法是最重要的方法。公式法適用於任何一元二次方程(有人稱之為萬能法),在使用公式法時,一定要把原方程化成一般形式,以便確定係數,而且在用公式前應先計算判別式的值,以便判斷方程是否有解。
配方法是推導公式的工具,掌握公式法後就可以直接用公式法解一元二次方程了,所以一般不用配方法
解一元二次方程。但是,配方法在學習其他數學知識時有廣泛的應用,是初中要求掌握的三種重要的數學方法之一,一定要掌握好。(三種重要的數學方法:換元法,配方法,待定係數法)。
2樓:
a*x^2+b*x+c=0
解得x=(2b+-sqrt(b^2-4ac))/2a
如何解一元二次方程,用配方法解一元二次方程的步驟是什麼?
灘上的流沙 方法 1.配方法 可解全部一元二次方程 2.公式法 可解全部一元二次方程 3.因式分解法 可解部分一元二次方程 因式分解法又分 提公因式法 公式法 又分 平方差公式 和 完全平方公式 兩種 和 十字相乘法 4.開方法 可解全部一元二次方程 一元二次方程的解法實在不行 你買個卡西歐的fx ...
二次函式與一元二次方程的關係,一元二次方程和二次函式關係怎麼講
假設二次函式為 f x ax 2 bx c 一元二次方程為 ax 2 bx c 0 那麼方程的解就是函式曲線與x軸的交點橫座標。如果函式曲線與x軸沒有交點,則方程沒有實根 如果只有一個交點,則方程有一個重根 如果有兩個交點,則方程有兩個實根。 張家主任 一個二次函式影象如果與x 軸有兩個交點,那麼這...
一元二次方程
1 3 x 2 2 2 x 3 x 2 2 x 2 0 3 x 2 2 x 2 0 3x 4 x 2 0 x 4 3或x 2 2 x 2x 1 0 x 2x 1 2 x 1 2 x 1 根號2 x 1 根號2 x 1 根號2 3 x 1 2x 1 x 1 2 3x x 1 2x 1 x 1 2 3x...