1樓:nice你
一. 求函式最值常用的方法
最值問題是生產,科學研究和日常生活中常遇到的一類特殊的數學問題,是高中數學的一個重點, 它涉及到高中數學知識的各個方面, 解決這類問題往往需要綜合運用各種技能, 靈活選擇合理的解題途徑, 而教材中沒有作出系統的敘述.因此, 在數學總複習中,通過對例題, 習題的分析, 歸納出求最值問題所必須掌握的基本知識和基本處理方程.
常見的求最值方法有:
1.配方法: 形如的函式,根據二次函式的極值點或邊界點的取值確定函式的最值.
2.判別式法: 形如的分式函式, 將其化成係數含有y的關於x的二次方程.由於, ∴≥0, 求出y的最值, 此種方法易產生增根, 因而要對取得最值時對應的x值是否有解檢驗.
3.利用函式的單調性 首先明確函式的定義域和單調性, 再求最值.
4.利用均值不等式, 形如的函式, 及≥≤, 注意正,定,等的應用條件, 即: a, b均為正數, 是定值, a=b的等號是否成立.
5.換元法: 形如的函式, 令,反解出x, 代入上式, 得出關於t的函式, 注意t的定義域範圍, 再求關於t的函式的最值.
還有三角換元法, 引數換元法.
6.數形結合法 形如將式子左邊看成一個函式, 右邊看成一個函式, 在同一座標系作出它們的圖象, 觀察其位置關係, 利用解析幾何知識求最值.
求利用直線的斜率公式求形如的最值.
7.利用導數求函式最值
2樓:匿名使用者
根據你的年級來說 如果是高中 一般性是根據單調和定義區間來求的
3樓:知識站小彭老師
回答1、換元法求最值。
用換元法求最值主要有三角換元和代數換元,用換元法要特別注意中間變數的範圍。
2、判別式求最值。
主要適用於可化為關於自變數的二次方程的函式。
3、數形結合。
主要適用於幾何圖形較為明確的函式,通過幾何模型,尋找函式最值。
4、函式單調性。
先判定函式在給定區間上的單調性,而後依據單調性求函式的最值。
更多6條
數學中的最大值和最小值是什麼意思?如何區分呢? 5
4樓:匿名使用者
1、最大值,為已知的資料中的最大的一個值。
2、最小值,為已知的資料中的最
小的一個值。
集合的最大和最小值分別是集合中最大和最小的元素,函式的最大值和最小值被統稱為極值。
3、區分方法:
在函式影象或者集合影象中,最高點是最大值,最低點是最小值。
5樓:朝雨憶蓮
在給你的任何數中,最大的為最大值,最小的為最小值,如:1,2,3,4,5…100,其中,最小值為1,最大值為100.
6樓:匿名使用者
1,2,3中最大值為3,最小值為1.最大,最小首先要確定一個數域或者範圍或者集合,這樣討論才有意義.否則就很難說,比如自然數數集中最大值不存在或者為無窮大,最小值為1
7樓:放手一起飛
在二次函式中 最大值指a小於等於零時頂點的縱座標
最大值指a大於等於零時頂點的縱座標
8樓:落蕭星夢
最小值是最小的數值,為0,最大值,比如說1,21,和5中,21是最大值哦。1匙最小值。主要看是什麼題目,什麼情況
二次函式最大值最小值怎麼求?
9樓:匿名使用者
二次函式的一般式是y=ax的平方+bx+c,當a大於0時開
口向上,函式有最小值。
當版a小於0時開口向下,則函式有最大值權.而頂點座標就是(-2a分之b,4a分之4ac-b方)這個就是把a、b、c分別代入進去,求得頂點的座標.4a分之4ac-b方就是最值。
10樓:匿名使用者
20191120 數學04
11樓:匿名使用者
假如題目說的定bai
義域是實數集合,du二次zhi項係數是
正數,函式dao有最小值內無最大值。
二次項係數容是負數,函式有最大值無最小值。
設函式是
y=ax²+bx+c,
當x=-b/2a, y=(4ac-b²)/4a,
12樓:匿名使用者
①先畫函式圖象,當a>0時,且x=o,則y有最小值為0,反之則可
13樓:匿名使用者
4a分之4ac減b方
如何求函式的最大值與最小值??
14樓:關鍵他是我孫子
求函式的最大值與最小值的方法:
f(x)為關於x的函式,確定定義域後,應該可以求f(x)的值域,值域區間內,就是函式的最大值和最小值。
一般而言,可以把函式化簡,化簡成為:
f(x)=k(ax+b)²+c 的形式,在x的定義域內取值。
當k>0時,k(ax+b)²≥0,f(x)有極小值c。
當k<0時,k(ax+b)²≤0,f(x)有最大值c。
關於對函式最大值和最小值定義的理解:
這個函式的定義域是【i】
這個函式的值域是【不超過m的所有實數的(集合)】而恰好(至少有)某個數x0,
這個數x0的函式值f(x0)=m,
也就是恰好達到了值域(區間)的右邊界。
同時,再沒有其它的任何數的函式值超過這個區間的右邊界。
所以,我們就把這個m稱為函式的最大值。
15樓:員名酆明智
用導數可以求。
求導數的方法編輯本段
(1)求函式y=f(x)在x0處導數的步驟:
①求函式的增量δy=f(x0+δx)-f(x0)②求平均變化率
③取極限,得導數。
(2)幾種常見函式的導數公式:
①c'=0(c為常數);
②(x^n)'=
nx^(n-1)
(n∈q);
③(sinx)'
=cosx;
④(cosx)'=-
sinx;
⑤(e^x)'
=e^x;
⑥(a^x)'
=(a^x)
*ina
(ln為自然對數)
⑦(inx)'
=1/x(ln為自然對數)
⑧(logax)'=1/(xlna)
,(a>0且a不等於1)
補充一下。上面的公式是不可以代常數進去的,只能代函式,新學導數的人往往忽略這一點,造成歧義,要多加註意。
(3)導數的四則運演算法則:
①(u±v)'=u'±v'
②(uv)'=u'v+uv'
③(u/v)'=(u'v-uv')/
v^2(4)複合函式的導數
複合函式對自變數的導數,等於已知函式對中間變數的導數,乘以中間變數對自變數的導數--稱為鏈式法則。
導數是微積分的一個重要的支柱。牛頓及萊不苨茨對次做出了卓越的貢獻!
16樓:匿名使用者
^就是y=f(x)在x取任意值時,y能達到的最大值。
舉例如:
函式y=-(x-1)^2
不管x取什麼值,總有y<=0,且只有x=1時,y=0按你上面的定義說,就有:
函式y=f(x)=-(x-1)^2的定義域為所有實數,且滿足:
(1)對於任意的x∈r,都有f(x)≤0;
(2)存在x0=1(∈r),使得f(1)=0;
所以0是函式y=f(x))=-(x-1)^2的最大值。
求最大值、最小值一般都是利用配方法,想辦法把函式式變成形如y=a(x+b)^2+c的樣子;
那麼當a<0時,有最大值,且x=-b時取最大值c;
a>0時,有最小值,且x=-b時取最小值c.
17樓:白雲無忌
...........這個是定義吧,它的意思是在定義域內的任何一個數都小於或者等於某個實數m,那麼則在這個定義域內m是他的最大值;當取x0時它取到m,即取x0時取到最大值。
比如有資料(1 2 5 4 6)這個資料組,你可以理解為定義域,而在這個資料組中最大的是6,也就是說1≤6 2≤6 5≤6 4≤6 6≤6,那麼6就是這個資料組中的最大值。
如果分別用x1=1,x2=2,x3=5,x4=4,x5=6表示函式未知數,那麼當該函式取x5時函式取到最大值6。
其實也沒你想象的那麼難了,他就是文字繞來繞去,考試時你只要理解就沒問題,何況考試一般又不會考定義
18樓:匿名使用者
你的意思是你不理解m為什麼是最大值? 在它的定義域裡面它小於或等於m 那也就是說沒有一個數可以大於m 也就是m是最大值咯。
其實最值的方法很多 一般有導數法是較普遍的,下面是常用的導數公式1.y=c(c為常數) y'=0 2.y=x^n y'=nx^(n-1) 3.
y=a^x y'=a^xlna y=e^x y'=e^x 4.y=logax y'=logae/x y=lnx y'=1/x 5.y=sinx y'=cosx 6.
y=cosx y'=-sinx 7.y=tanx y'=1/cos^2x 8.y=cotx y'=-1/sin^2x 9.
y=arcsinx y'=1/√1-x^2 10.y=arccosx y'=-1/√1-x^2 11.y=arctanx y'=1/1+x^2 12.
y=arccotx y'=-1/1+x^2
還有一些比較特殊的 例如 一個函式的分子分母都有未知數的話 就可以採用求根法,如y=(ax+b)/cx 這時x一定有定義域的 那麼你就可以 把y直接乘以cx,也就是用這個方程來解x 得出的x用定義域表示 那就可以求出y的取值範圍了。 類似的方法還有很多 不便都寫出來 如果有疑問 你可以hi我
19樓:匿名使用者
首先,確定函式的定義域。將定義域邊界值代入函式求出函式值。然後,對函式進行一次求導,令其等於0.
解得x值,分別將求得的x值代入函式求出函式值。前後2組函式值進行比較即可得到最大值和最小值。
20樓:匿名使用者
理解的時候要每一個字扣準。
(1)對於任意的x∈i,都有f(x)≤m;
這句話是說,在該函式的定義域中其函式值都小於或者等於一個數(m)(2)存在x0∈i,使得f(x0)=m
這句話是說,在該函式的定義域中要存在這樣一個可以讓函式值等於m的x0求極值一般用求導的方法,其一階導數等於0。
21樓:匿名使用者
對於任一函式y=f(x),不同的x對應不同的y值,假如當x取a時y最大,且為b,也就是不管x取什麼值,y都小於等於b,那麼b就是這個函式的最大值啊,當然這裡是有條件的:x能取到a值,也就是說a在定義域內。
求函式最大值方法一般是:y=f(x)對x求導,令導數為0,解出x,再把求出的x代入函式中最後求出y值。
22樓:厚樺聞濃
您好在高一高二階段求函式最大值最小值
一般是利用函式在某定義域的增減性結合
最值點進行判斷還應該利用數形結合思想
直接看在某定義域的增減性在高三會用到求函式導數來進行判斷利用導函式等於0
解得疑點
再判斷疑點是極大值點還是極小值點再將疑點與定義域的x的左右端點帶入比較他們值得大小
最大的為函式最大值
最小的為函式的最小值
如何計算函式的最大值和最小值?
23樓:枕風宿雪流年
求函式最值的方法如下:
1.配方法: 形如的函式,根據二次函式的極值點或邊界點的取值確定函式的最值.
2.判別式法: 形如的分式函式, 將其化成係數含有y的關於x的二次方程.由於, ∴≥0, 求出y的最值, 此種方法易產生增根, 因而要對取得最值時對應的x值是否有解檢驗.
3.利用函式的單調性 首先明確函式的定義域和單調性, 再求最值.
4.利用均值不等式, 形如的函式, 及≥≤, 注意正,定,等的應用條件, 即: a, b均為正數, 是定值, a=b的等號是否成立.
5.換元法: 形如的函式, 令,反解出x, 代入上式, 得出關於t的函式, 注意t的定義域範圍, 再求關於t的函式的最值.
6.數形結合法 形如將式子左邊看成一個函式, 右邊看成一個函式, 在同一座標系作出它們的圖象, 觀察其位置關係, 利用解析幾何知識求最值.
最大值與最小值(導數),高等數學求最大值與最小值問題
我不是他舅 1 f x 12x 1 0 x 1 12 x 1 12,f x 0,f x 是減函式x 1 12,f x 0,f x 是增函式則x 1 12是極小值 他是區間內唯一的極值,所以是最小值 最大值在邊界 f 1 12 47 24 f 1 7 f 1 9 f 1 f 1 所以最大值 9,最小值...
程式設計 求數的最大值,最小值,平均值,並輸出
python寫的求值 s 1,2,3,4,5,6,7,8,9,10 注 這個是10個數 max s 注 這是求最大數 10 min s 注 這是求最小數1 sum s len s 注 這是求平均數5 c語言程式設計 從鍵盤輸入10個數,求最大值,最小值和平均值 include void input ...
二次函式最大值,最小值,二次函式的最大值,最小值怎麼求
夢色十年 二次項係數是正數,函式有最小值無最大值。二次項係數是負數,函式有最大值無最小值。設函式是y ax bx c 當x b 2a,y 4ac b 4a。擴充套件資料 二次函式一次項係數b和二次項係數a共同決定對稱軸的位置。當a 0,與b同號時 即ab 0 對稱軸在y軸左 因為對稱軸在左邊則對稱軸...