怎樣判斷函式的增減性,如何判斷一個函式的的單調性

時間 2021-08-30 10:26:27

1樓:

函式的單調性(monotonicity)也可以叫做函式的增減性。

方法:1、圖象觀察法

如上所述,在單調區間上,增函式的圖象是上升的,減函式的圖象是下降的。因此,在某一區間內,一直上升的函式圖象對應的函式在該區間單調遞增;一直下降的函式圖象對應的函式在該區間單調遞減。

2、求導法

導數與函式單調性密切相關。它是研究函式的另一種方法,為其開闢了許多新途徑。特別是對於具體函式,利用導數求解函式單調性,思路清晰,步驟明確,既快捷又易於掌握,利用導數求解函式單調性,要求熟練掌握基本求導公式。

如果函式y=f(x)在區間d內可導(可微),若x∈d時恆有f'(x)>0,則函式y=f(x)在區間d內單調增加;反之,若x∈d時,f'(x)<0,則稱函式y=f(x)在區間d內單調減少。

擴充套件資料判斷函式單調性的方法步驟

利用定義證明函式f(x)在給定的區間d上的單調性的一般步驟:

①任取x1,x2∈d,且x1<x2;

②作差△y=f(x1)-f(x2);

③變形(通常是因式分解和配方);

④定號(即判斷△y的正負);

⑤下結論(即指出函式f(x)在給定的區間d上的單調性)。

即為:取值 → 作差 → 變形 → 定號 → 下結論。

2樓:楊建朝

判斷函式單調性的常見方法

一、 函式單調性的定義:

一般的,設函式y=f(x)的定義域為a,i↔a,如對於區間內任意兩個值x1、x2,

1)、當x1x2時,都有f(x1)>f(x2),那麼就說y=f(x)在區間i上是單調減函式,i稱為函式的單調減區間。

二、 常見方法: ⅰ、定義法:

定義域判斷函式單調性的步驟 ① 取值:

在函式定義域的某一子區間i內任取兩個不等變數x1、x2,可設x1

作差f(x1)-f(x2),並通過因式分解、配方、有理化等方法向有利於判斷差的符號的方向變形; ③ 定號:

確定差f(x1)-f(x2)的符號; ④ 判斷:

根據定義得出結論。

3樓:茶茶

你具體是什麼不懂?影象還是給你一個函式式?

如何判斷一個函式的的單調性

4樓:匿名使用者

1、定義法

定義法:按照證明函式單調性的五個步驟(1取值,2作差,3變形,4判號,5定論)進行判斷。

定義如下:函式的單調性(monotonicity)也叫函式的增減性,可以定性描述在一個指定區間內,函式值變化與自變數變化的關係。

當函式f(x) 的自變數在其定義區間內增大(或減小)時,函式值也隨著增大(或減小),則稱該函式為在該區間上具有單調性(單調增加或單調減少)  。在集合論中,在有序集合之間的函式,如果它們保持給定的次序,是具有單調性的。

2、當a>0時,函式af(x)與f(x)有相同的單調性; 當a<0時,函式af(x)與f(x)有相反的單調性;

3、當函式f(x)恆為正(或恆為負)時,f(x)與1/f(x)有相反的單調性;

4、若f(x)非負,則f(x)與f(x)的算術平方根具有相同的單調性;

5、若f(x)與g(x)的單調性相同,則f(x)+g(x)的單調性與f(x)、g(x)的單調性相同;

6、若f(x)與g(x)的單調性相反,則f(x)-g(x)的單調性與f(x)的單調性相同。

擴充套件資料

單調性的運用:

1、利用函式單調性求最值

求函式的最大(小)值有多種方法,但基本的方法是通過函式的單調性來判定,特別是對於小可導的連續點,開區問或無窮區問內最大(小)值的分析,一般都用單調性來判定。

2、利用函式單調性解方程

5樓:匿名使用者

常用解題方法:

在定義域上任取x1>x2

然後把x1,x2帶入函式,判斷f(x1)和f(x2)的大小如果f(x1)大,那麼就是遞增函式,如果f(x2)大,那麼就是遞減函式

如果有影象來判斷,上升的函式部分為遞增函式,下降的函式部分為遞減函式

6樓:匿名使用者

第一 看函式影象

第二 用定義方法證明 即設x1較結果與零的大小或結果與1的大小 即f(x1)

7樓:匿名使用者

用定義法 f(x1)-f(x2)並且x1f(x2)為單調帝減

8樓:的地方地方地

函式單調性的判斷的方法教學

怎麼判斷函式的增減性,這兩個函式的增減性是怎麼判斷的 越詳細越好

金果 1 圖象觀察法 如上所述,在單調區間上,增函式的圖象是上升的,減函式的圖象是下降的。因此,在某一區間內,一直上升的函式圖象對應的函式在該區間單調遞增 一直下降的函式圖象對應的函式在該區間單調遞減。2 求導法 導數與函式單調性密切相關。它是研究函式的另一種方法,為其開闢了許多新途徑。特別是對於具...

怎樣判斷是奇函式還是偶函式,怎麼判斷奇函式和偶函式

士妙婧 先看看定義域是否關於原點對稱,若對稱 再看f x 與f x 的關係 若f x f x 則是偶函式 若f x f x 則是奇函式 清石墨雪 奇函式就是說 f x f x 這是基本特點,並且如果沒有特殊說明的話,過原點。正弦函式就是基本的奇函式。偶函式滿足f x f x 也就是說以y軸為對稱軸。...

判斷正弦函式的奇偶性,如何判斷函式奇偶性

1.解 取f x 和f x 則有 f x lg sinx 根號下1 sinx 2 f x lg sinx 根號下1 sinx 2 lg sinx 根號下1 sinx 2 f x f x f x 為偶函式2.解 取f x 和f x 則有 f x sinx sin 2x sin 2x sin 3x si...