若不等式mx 2 2 m 1 x 9m 40的解集為R,求

時間 2021-09-08 19:25:34

1樓:匿名使用者

m=0,則2x+4<0,此時解集不是rm不等於0,則這是二次不等式二次函式恆小於0,則開口向下且和x軸沒有交點,即判別式小於0開口向下,m<0

判別式小於0,4(m+1)^2-4m(4+9m)<0m^2+2m+1-4m-9m^2<0

8m^2+2m-1>0

(4m-1)(2m+1)>0

m>1/4,m<-1/2

m<0所以m<-1/2

若關於x的不等式mx2-x+m-1大於等於0對一切x大於0恆成立,求m的取值範圍

2樓:匿名使用者

解:設y=m·x平方-x+m-1

∵依據題意:y>0恆成立

∴拋物線開口向上,與x軸沒有交點,則:

m>0判別式△<0

即:m>0

△=1-4m(m-1)<0

由:1-4m(m-1)<0得:

1 - 4·m平方 +4m<0

∴4·m平方 -4m -1>0

解這個關於m的不等式得:

m< (-1-根號2)/2 或 m>(-1+根號2)/2∵m>0

∴m的取值範圍是: m>(-1+根號2)/2【很高興為你解決以上問題,希望對你的學習有所幫助!】≤、≥ ∠

3樓:1予一朵小紅花

您好,您好,由於本人不是理科生不知道算的對不對,m大於0小於1,不知道對不對,謝謝

若不等式mx^2+2(m+1)x+4+9m<0的解集為r,求實數m的取值範圍。

4樓:我不是他舅

m=0,則2x+4<0,此時解集不是r

m不等於0,則這是二次不等式

二次函式恆小於0,則開口向下且和x軸沒有交點,即判別式小於0開口向下,m<0

判別式小於0,4(m+1)^2-4m(4+9m)<0m^2+2m+1-4m-9m^2<0

8m^2+2m-1>0

(4m-1)(2m+1)>0

m>1/4,m<-1/2

m<0所以m<-1/2

5樓:匿名使用者

當m=0時,原不等式等價於2x+4<0

可解得x<-2,與原題不符

當m不等於0,令f(x)=mx^2+2(m+1)x+4+9m=m(2-(2m+1)/(2m))^2-(2m+1)^2/(4m)+4+9m

當m>0時,f(x)的影象為開口方向向上的拋物線,在r上無法使f(x)<0成立

故m不可能大於0

當m<0時,f(x)的影象為開口方向向下的拋物線,若在r上使f(x)<0成立,

則有判別式4(m+1)^2-4m(4+9m)<0最大值-(2m+1)^2/(4m)+4+9m<0最後的結果自己算吧

太複雜了

6樓:教父蘿蔔

「不等式mx^2+2(m+1)x+4+9m<0的解集為r」的含義為:「m<0,且mx^2+2(m+1)x+4+9m=0無解」:

m<0-------(1)

4(m+1)^2-4m(4+9m)<0-------(2)根據(1)(2)可解得m的取值範圍,您自己解了。

7樓:

當m=0時顯然不成立,故m#0.原不等式左邊為一個二次函式,要使它恆小於0則必需二次函式的影象開口向下而且頂點在x軸的下方:所以可列出方程組m<0……&1判別式<0……&2聯立解得:

m<-(1/2)!

若關於x的方程(m²-1)x²-2(m+2)x+1=0有實數根,求m的取值範圍。

8樓:小小芝麻大大夢

m≥-5/4。

解:m²=1時,即m=1或m=-1時,

m=1時,方程變為-6x+1=0 x=1/6,有實根,滿足題意。

m=-1時,方程變為-2x+1=0 x=1/2,有實根,滿足題意。

m²≠1時,即m≠1且m≠-1時,方程是一元二次方程,方程有實根,判別式△≥0

[-2(m+2)]²-4(m²-1)≥0

4m+5≥0

m≥-5/4

綜上,得m≥-5/4

9樓:demon陌

(m-2)x²-2(m +1)x+1=0有實數根則:△=4(m+1)²-4(m-2)≥0

m²+2m+1-m+2≥0

m²+m+3≥0

(m+1/2)²+11/4≥0

當然成立

所以,m∈r,可取一切實數。

多項式函式f ( x )的正實根個數等於f ( x )的非零係數的符號變化個數,或者等於比該變化個數小一個偶數的數; f ( x )的負實根個數等於f ( - x)的非零係數的符號變化個。

10樓:匿名使用者

解:m²=1時,即m=1或m=-1時,

m=1時,方程變為-6x+1=0 x=1/6,有實根,滿足題意。

m=-1時,方程變為-2x+1=0 x=1/2,有實根,滿足題意。

m²≠1時,即m≠1且m≠-1時,方程是一元二次方程,方程有實根,判別式△≥0

[-2(m+1)]²-4(m²-1)≥0

8m+8≥0

m+1≥0

m≥-1

又m≠-1,因此m>-1

綜上,得m≥-1或m=1

11樓:青

當m平方-1=0時,即m=±1時。方程為一元一次方程:-2(±1+2)x=0有一個實數根。∴m=±1符合題意。

當m平方-1≠0時即m≠±1時方程為

一元二次方程(m平方-1)x平方-2(m+2)x+1=0有實數根∴△≥0 ∴m≥-5/4

∴m≥-5/4 且m≠±1

綜上得:m的取值範圍為:m≥-5/4

12樓:匿名使用者

根據公式法解該方程

x=【-b±根號(b²-4ac)】/2=m+2±根號(4m+5)∵原方程有實數根

∴4m+5≥0

∴m≥-5/4

13樓:匿名使用者

b²-4ac≥0時,方程有實數根

m大於等於1.25

14樓:匿名使用者

(-2(m+2))²-4(m²-1)≥0

4m²+16m+16-4m²+4≥0

16m≥-20

m≥-5/4

若不等式(a 2 x 2 2 a 2 x 40對一切X屬於R恆成立。則a的取值範圍是說下方法。詳細點

解 討論 1 若a 2 0 則可得 4 0 符合題意。此時a 2 2 若a 2,為了使 a 2 x 2 a 2 x 4 0對任意x r恆成立。必有a 0 這裡的a是函式y ax bx c中的a 0。這樣二次函式是開口向下的,並且與x軸沒有交點,這樣無論x取什麼值,函式值必然小於0 所以a 2 0,a...

若關於m的不等式mx 2m 1 x m 1 0的解集為空集,求m的取值範圍

若關於m的不等式mx 2m 1 x m 1 0的解集為空集,則關於m的不等式mx 2m 1 x m 1 0的解集為r,即當m 0時,x 1 0,不符合題意 設不等式mx 2m 1 x m 1 0對應的函式為f x mx 2m 1 x m 1 當m 0時,函式f x 是一條開口向上的拋物線,不符合題意...

若不等式a小於等於 x 2 2x對於一切恆成立,則實數a的取值範圍是

百小度 1 a小於等於 x 2 2x對於一切 1,1 恆成立,只需a x 2 2x 的最小值 根據函式y x 2 2x的影象可得出 函式在 1,1 上單調遞增,所以最小值在x 1時取到,最小值等於 3,所以a 3 2 抱歉,剛才沒看到第二題 x 2 6ax 5a 2小於等於0 所以 x a x 5a...