1樓:數學新綠洲
解析:(1) 由已知得:f(x)=sinx+sin(π/2 -x)=sinx+cosx
若a屬於[0,π],那麼:2a屬於[0,2π]
又sin2a=1/3<1/2,那麼:
0<2a<π/6或5π/6<2a<π
即00因為(sina+cosa)²=sin²a+2sinacosa+cos²a=1+sin2a=4/3
所以解得:f(a)=sina+cosa=2(根號3)/3
.(2) 由(1)可得:f(x)=sinx+cosx=根號2*sin(x+ π/4)
若x屬於[0,π],那麼:x+π/4 屬於[π/4,5π/4]
則可知當x+π/4 屬於[π/4,π/2]即x屬於[0,π/4]時,函式f(x)是增函式
所以f(x)的單調遞增區間為[0,π/4]。
2樓:匿名使用者
解:(1)∵α∈[0,π],∴sinα>0∴f(α)=sinα+cosα
又sin2α=1/ 3 =2sinα•cosα>0,∴α∈(0,π /2 ),sinα+cosα>0由(sinα+cosα)²=1+2sinα•cosα=4/ 3 ,∴sinα+cosα=2√3 / 3 ,
∴f (α)=2√3 / 3
(2)由(1)知f (x)= 2 sin(x+π /4 ),當2kπ-π /2 ≤x+π /4 ≤2kπ+π /2 (k∈z)時,f(x)是單調遞增
∴2kπ-3π /4 ≤π≤2kπ+π/ 4 (k∈z)又0≤x≤π,
∴f(x)的單調遞增區間為[0,π/ 4 ].
已知函式f(x)=sin(π/2-x)+sinx
3樓:良駒絕影
f(x)=cosx+sinx
f(x)=√2sin(x+π/4)
(1)遞增區間:2kπ-內π容/2≤x+π/4≤2kπ+π/2得:2kπ-3/4π≤x≤2kπ+π/4遞增區間是:
[2kπ-3π/4,2kπ+π/4],其中k∈z(2)f(a-π/4)=√2sina=√2/3則:sina=1/3
f(2a+π/4)=√2sin(2a+π/2)=√2cos2a=√2[1-2sin²a]=(7/9)√2
4樓:
解:∵f(x)=sin[(π/2)-x]+sinx=√2[(√2/2)cosx+(√2/2)sinx]=√2[sin(π/4)cosx+cos(π/4)sinx]=√2sin[x+(π/4)]
又∵y=sinx在[-π/2,π/2]上單調遞增,即:62616964757a686964616fe4b893e5b19e31333332393461-π/2≤x≤π/2
∴-π/2≤x+(π/4)≤π/2
整理得:-3π/4≤x≤π/4
∴f(x)在2kπ-(3π/4)≤x≤2kπ+(π/4)(k∈z)上單調遞增;
同理,∵sinx在[π/2,3π/2]上單調遞減;
∴π/2≤x+(π/4)≤3π/2
整理得:π/4≤x≤5π/4
∴f(x)在2kπ+(π/4)≤x≤2kπ+(5π/4)(k∈z)上單調遞減;
∵f(a-π/4)=√2/3
∴f(a-π/4)=√2sin[(a-π/4)+(π/4)=√2sina
即√2sina=√2/3
∴sina=1/3
sina^2=1/9
cosa^2=1-(1/3)^2
=8/9
f(2a+π/4)=√2sin[(2a+π/4)+(π/4)]=√2sin(2a+π/2]
=-√2cos2a
=-√2(cosa^2-sina^2)
=-√2[(8/9)-(1/9)]
=-7√2/9
5樓:匿名使用者
(1)f(x)=cosx+sinx=根號2乘以sin(x+π/4)由-π/2+2kπ<=x+π/4<=π/2+2kπ解得回單調區間[-π3/4+2kπ,π/4+2kπ](2)f(x)=cosx+sinx=根號2乘以答sin(x+π/4)f(a-π/4)=根號2乘以sin(a)=根號2/3,所以sina=1/3
f(2a+π/4)=根號2乘以sin(2a+π/2)=sin2a=2sinacosa
已知集合A2,X X 4,3X 3X 4。若2屬於A。是否有滿足題意的實數X?求所有滿足的X
若x x 4 2,則x 根號17 2 1 2,此時3x 3x 4 14,滿足相異性 若3x 3x 4 2,則x 1,2,但此時x x 4 2,不滿足相異性,從而滿足題意的x 根號17 2 1 2 因為集合a 若2屬於a 所以x x 4 2,或3x 3x 4 2解方程x x 4 2可得 x 3或x 2...
已知f xx 2x 若ab 1,且
畫f x 圖易知 3 且a 2 2a 1 b 2 2b 1 所以 a 1 2 b 1 2 4 令a 2sint 1,b 2cost 1 則 3 4 2k 由於 3 2 4k 2t 4k 所以 1 所以 3 暖眸敏 y x 2x 1 x 1 2 影象關於x 1對稱保留y x 2x 1原來上方部部分不動...
已知函式F X A 2 X 1若函式G X F 2的X方)是奇函式求A的值
探索函式f x 的單調性 在r上任取x1,x2,x1x2,f x1 f x2 2 2 x1 1 2 2 x2 1 2 2 x1 2 x2 2 x2 1 2 x1 1 因為y 2 x單調遞增,所以2 x1 2 x20,而分母 2 x2 1 2 x1 1 0,所以f x1 f x2 0,即函式f x 在...