1樓:恆星天子
可以,以為左右趨向x=0處的極限相等且等於0.
2樓:匿名使用者
define
f(x) = sin1/x if x 不等於0
= 0 if x =0
lim(x->0+) f(x) is undefinedlim(x->0-) f(x) is undefinedf(x) is not continuous at x=0
問y=sinxsin1/x的間斷點為0是什麼間斷點,為什麼?
3樓:匿名使用者
y=sinxsin1/x的間斷點為0是第一類可去間斷點。
因為lim(x->0)sinxsin1/x=0極限存在。
間斷點簡介
回:設一元實函式答f(x)在點x0的某去心鄰域內有定義。如果函式f(x)有下列情形之一:
(1)在x=x0沒有定義;
(2)雖在x=x0有定義,但x→x0 limf(x)不存在;
(3)雖在x=x0有定義,且x→x0 limf(x)存在,但x→x0 limf(x)≠f(x0),
則函式f(x)在點x0為不連續,而點x0稱為函式f(x)的間斷點。
點x=0是函式f(x)=xsin(1/x)的_____間斷點
4樓:假面
點x=0是函式f(x)=xsin(1/x)的去間斷點
具體回答如下:
f(0)無定義
因為x是分母不能為0
因此x = 0是間斷點
加之在0處左右極限存在且相等
故是可去間斷點
如果函式f(x)有下列情形之一:(1)函式f(x)在點x0的左右極限都存在但不相等,即f(x0+)≠f(x0-);
(2)函式f(x)在點x0的左右極限中至少有一個不存在;
(3)函式f(x)在點x0的左右極限都存在且相等,但不等於f(x0)或者f(x)在點x0無定義。
則函式f(x)在點x0為不連續,而點x0稱為函式f(x)的間斷點。
5樓:橘落淮南常成枳
是可去間斷點。
分析如下:
因為lim(x-->0)xsin(1/x)=0。
所以,只要補充f(0)=0, 即可使得函式在x=0點處連續。
6樓:匿名使用者
是可去間斷點,因為lim(x-->0)xsin(1/x)=0.
所以,只要補充f(0)=0, 即可使得函式在x=0
點處連續.
7樓:匿名使用者
可去間斷點,
因為x->0時,函式極限存在,等於零:lim(x->0) xsin(1/x)=0
當x 0時或當x時。為什麼sin(1 x)的極限不一樣
sin 1 x 的極限不一樣因為當x 0時沒有極限,當x 極限是0。1 x 0時,sin 1 x 是一個在 1到1之間擺動的數,並不滿足極限的定義,所以沒有極限。2 x lim sin1 x sin x lim 1 x sin0 0極限的求法有很多種 1 連續初等函式,在定義域範圍內求極限,可以將該...
limx趨近於0時。sin1 x的極限是什麼?x sin
x趨於0時x.sin1 x的極限為0的原因 limsin 1 x 1 x 0 上述沒有極限,因為正弦函式為週期連續函式,1 x為無窮量,sin1 x為不定值,因而沒有極限。limxsin 1 x 2 x 0 正弦函式為週期連續函式,sin1 x 1,是有限值,x為無窮小量,兩者相乘仍為無窮小量,其極...
當X 0或者Xlim sin1 x的極限等於多少?求
墨汁諾 第一個沒有極限,第二個是0。分析過程如下 1 x 0lim sin1 x 設n為整數。設x1 1 n 當n 時x1 0x1 0lim sin1 x1 n lim sin1 1 n n lim sin n 0設x2 1 n 2 當n 時x2 0x2 0lim sin1 x2 n lim sin...