1樓:
因為,在一個三角形中,有一個非定理性規則:「大角對大邊,小角對小邊」
反過來,也成立,即:「大邊對大角,小邊對小角」(對,是指邊相對的角;或者角所對的邊)
故,當a為最大的邊時,則最大的角a,滿足為銳角,則b、c也自然必為銳角;
同時,當c為最大的邊時,最大的內角則為c,c為銳角,則a、b自然必為銳角。
所以,根據三角函式餘弦定理可得,
當a為最大邊時,根據餘cosa=(b² + c² -a²)/2bc>0,即 b² + c² -a²>0;
同理,當c為最大的邊時,根據餘弦定理可得,cosc=(a² +b² -c²)/2ab>0,即 a² + b² -c²>0;
2樓:匿名使用者
三角形是銳角三角形
c邊最大時:a²+b²>c² a²>c²-b²=2²-1²=3 a>√3
a邊最大時:c²+b²>a² a<√5所以 √3<a<√5
3樓:永遠的詩卉
餘弦定理可知cosc=(a^2+b^2+c^2)/2ab
因為c是c的對角,,,用餘弦定理進行邊角互換,,,
又2ab恆大於零,,,所以角的範圍只由a^2+b^2+c^2 決定
4樓:滋滋大飯糰
三角函式值學了嗎,cos∠c=(a^+b^-c^)÷2ab,因為銳角三角形,所以cos值》0,所以
cos∠c=(a^+b^-c^)÷2ab,即a^+b^-c^<0,在三角形中最大邊對最大角,結合cos影象就有上述結論
5樓:開心貓貓
因為餘弦公式,假設a b c對應的角為a b c a最大對應a最大,因為是銳角三角形,a<90度,餘弦值》0 餘弦a=(b*b+c*c-a*a)/2bc 同理可明白c最大時的情況
6樓:匿名使用者
具體的解答過程我就不多說 當a為最大邊的時候 如果有b^+c^-a^〉0則b^+c^〉a^ 則必有a^+b^-c^〉b^+c^+b^-c^=2b^>0
所以說 一般這種題 都是儘量求最大範圍 所以當a為最大邊時要用b^+c^-a^〉0而不是a^+b^-c^〉0?
7樓:
因為c為最大邊是是cosc=(a^+b^-c^)/2ab
8樓:匿名使用者
就是用定義啊,兩邊和大於第三邊啊。就是a+b>c;當a最大的時候就是b+c>a;啊,這樣是最簡單的理解方法了。還有一樣就是兩邊的減小於第三邊的。
已知三角形的三邊長如何求面積?
9樓:老衲吃橘子
各類三角形求面積方式如下所示:
1.已知三角形底a,高h,則 s=ah/2
2.已知三角形三邊a,b,c,則
(海**式)(p=(a+b+c)/2)
s=sqrt[p(p-a)(p-b)(p-c)]
=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
3.已知三角形兩邊a,b,這兩邊夾角c,則s=1/2
absinc,即兩夾邊之積乘夾角的正弦值。
4.設三角形三邊分別為a、b、c,內切圓半徑為r
則三角形面積=(a+b+c)r/2
5.設三角形三邊分別為a、b、c,外接圓半徑為r
則三角形面積=abc/4r
6.行列式形式
為三階行列式,此三角形
在平面直角座標系內
選取最好按逆時針順序從右上角開始取,因為這樣取得出的結果一般都為正值,如果不按這個規則取,可能會得到負值,但不要緊,只要取絕對值就可以了,不會影響三角形面積的大小。
該公式的證明可以藉助「兩夾邊之積乘夾角的正弦值」的面積公式 。
7.海倫——秦九韶三角形中線面積公式:
s=√[(ma+mb+mc)*(mb+mc-ma)*(mc+ma-mb)*(ma+mb-mc)]/3
其中ma,mb,mc為三角形的中線長.
8.根據三角函式求面積:
s= ½ab sinc=2r² sinasinbsinc= a²sinbsinc/2sina
注:其中r為外切圓半徑。
9.根據向量求面積:
其中,(x1,y1,z1)與(x2,y2,z2)分別為向量ab與ac在空間直角座標系下的座標表達,即:
向量臨邊構成三角形面積等於向量臨邊構成平行四邊形面積的一半。
三角形面積公式是指使用算式計算出三角形的面積,同一平面內,且不在同一直線的三條線段首尾順次相接所組成的封閉圖形叫做三角形,符號為△。
常見的三角形按邊分有等腰三角形(腰與底不等的等腰三角形、腰與底相等的等腰三角形即等邊三角形)、不等腰三角形;按角分有直角三角形、銳角三角形、鈍角三角形等,其中銳角三角形和鈍角三角形統稱斜三角形。
10樓:千山鳥飛絕
已知三角形的三邊長分別為a、b、c,根據海**式則三角形的面積公式如下圖所示,其中公式裡的p為半周長:
1、解析過程如下圖所示:
2、舉例計算過程如下:
11樓:叫那個知道
海倫-秦九韶公式
已知三邊是a,b,c
令p=(a+b+c)/2
則s=√[p(p-a)(p-b)(p-c)]
12樓:匿名使用者
利用海**式。
三邊是a,b,c;令p=(a+b+c)/2;則s=√[p(p-a)(p-b)(p-c)]
海**式:
假設在平面內,有一個三角形,邊長分別為a、b、c,三角形的面積s可由以下公式求得:
而公式裡的p為半周長(周長的一半):
注:"metrica"《度量論》手抄本中用s作為半周長,所以兩種寫法都是可以的,但多用p作為半周長。
它的特點是形式漂亮,便於記憶。
擴充套件資料公式意義
海**式的提出為三角形和多邊形的面積計算提供了新的方法和思路,在知道三角形三邊的長而不知道高的情況下使用海**式可以更快更簡便的求出面積,比如說在測量土地的面積的時候,不用測三角形的高,只需測兩點間的距離,就可以方便地匯出答案。
13樓:真心話啊
(面積=底×高÷2。其中,a是三角形的底,h是底所對應的高)註釋:三邊均可為底,應理解為:三邊與之對應的高的積的一半是三角形的面積。這是面積法求線段長度的基礎。
所有求三角形面積公式:
8、在平面直角座標系內,a(a,b),b(c,d),c(e,f)構成之三角形面積為
(正三角形面積公式,a是三角形的邊長)
(其中,r是外接圓半徑;r是內切圓半徑)
13、設三角形三邊為ac,bc,ab,點d垂直於ab,為三角形abc的高由於db=bc*cosb, cosb可用餘弦定理式表示。
利用餘弦定理求得:再利用勾股定理求得cd再用面積=底×高÷2,最終得出面積公式。
14樓:柿子的丫頭
海倫-秦九韶公式
三邊是a,b,c
令p=(a+b+c)/2
則s=√[p(p-a)(p-b)(p-c)]
已知三角形的三邊長,求三角形面積,有公式:
擴充套件資料
摺疊直角三角形
解直角三角形需要用到勾股定理(弦)定理,又稱畢達哥拉斯定理或畢氏定理(pythagoras theorem)。數學公 式中常寫作a^2+b^2=c^2,其中a和b分別為直角三角形兩直角邊,c為斜邊。
勾股弦數是指一組能使勾股定理關係成立的三個正整數。比如:3,4,5。
常見的勾股弦數有:3,4,5;6,8,10;5,12,13;10,24,26;等等。
其中,互素的勾股陣列成為基本勾股陣列,例如:3,4,5;5,12,13;8,15,17等等
摺疊斜三角形
在三角形abc中,角a,b,c的對邊分別為a,b,c. 則有
(1)正弦定理
a/sina=b/sinb= c/sinc=2r (r為三角形外接圓半徑)。
(2)餘弦定理
a^2=b^2+c^2-2bc*cosa;
^2=a^2+c^2-2ac*cosb;
c^2=a^2+b^2-2ab*cosc。
備註:勾股定理其實是餘弦定理的一種特殊情況。
(3)餘弦定理變形公式
cosa=(b^2+c^2-a^2)/2bc;
cosb=(a^2+c^2-b^2)/2ac;
cosc=(a^2+b^2-c^2)/2ab。
15樓:匿名使用者
已知三角形的三邊分別是a、b、c,
先算出周長的一半s=1/2(a+b+c)
則該三角形面積s=根號[s(s-a)(s-b)(s-c)]
這個公式叫海倫——秦九昭公式
證明:設三角形的三邊a、b、c的對角分別為a、b、c,
則根據餘弦定理c²=a²+b²-2ab·cosc,得
cosc = (a²+b²-c²)/2ab
s=1/2*ab*sinc
=1/2*ab*√(1-cos²c)
=1/2*ab*√[1-(a²+b²-c²)²/4a²b²]
=1/4*√[4a²b²-(a²+b²-c²)²]
=1/4*√[(2ab+a²+b²-c²)(2ab-a²-b²+c²)]
=1/4*√
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
設s=(a+b+c)/2
則s=(a+b+c), s-a=(-a+b+c)/2, s-b=(a-b+c)/2, s-c=(a+b-c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[s(s-a)(s-b)(s-c)]
所以,三角形abc面積s=√[s(s-a)(s-b)(s-c)]
證明完畢
16樓:親咯就跑
根據三角函式可以求出某條邊上的高,然後求面積公式就算出來了!
17樓:匿名使用者
這三角形的三邊長可以通過做高的形式用正玄餘玄正切餘切來求面積
18樓:何
三角形的面積公式:底×高÷2
19樓:匿名使用者
求三角形的面積需要知道底和高的長度,只知道三邊長,除非相鄰兩邊互相垂直,否則無法求面積。
20樓:西貝
海**式
s=√p(p-a)(p-b)(p-c)
p=a+b+c
21樓:匿名使用者
三角形的面積=底×高÷2
22樓:匿名使用者
已知三角形的三個邊長,求其面積!
23樓:匿名使用者
面積等於二分之一向量ab×向量ac
在已知三角形三邊的情況下怎麼判斷一個三角形是鈍角三角形還是銳角三角形還是直角三角形
24樓:你愛我媽呀
如果一個三角形的最長邊平方=其他兩邊的平方和,這個三角形是直角三角形;
如果一個三角形的最長邊平方》其他兩邊的平方和,這個三角形是鈍角三角形;
如果一個三角形的最長邊平方《其他兩邊的平方和,這個三角形是銳角角三角形;
如果一個三角形的三條邊相等,這個三角形是等邊三角形,也是銳角三角形。
25樓:好好學習
對於任意三角形三邊長分別為a,b,c(a>b>c)那麼只需判斷a=b^2+c^2-a^2的符號即可,
若a>0,則為銳角三角形,
若a<0,則為鈍角三角形
事實上如若學習過高中數學中的三角學就很簡單就會明白,建議瞭解
什麼叫鈍角三角形?什麼叫銳角三角形
鈍角三角形 定義 有一個角是鈍角的三角形是鈍角三角形.特點 1.鈍角大於九十度且小於一百八十度.2.鈍角三角形中,兩個銳角度數之和小於鈍角度數.銳角三角形 定義 三個角都是銳角的三角形叫做銳角三角形性質 銳角三角形中三個角都是銳角.三角形按角的大小可以分為銳角三角形 直角三角形和鈍角三角形。顧名思義...
已知銳角三角形abc中的內角a b c的對邊分別為a,b,c
1 向量m 2sinb,3 向量n 2 cos b 2 2 1,cos2b 向量m垂直於向量n,2sinb 2 cos b 2 2 1 3cos2b 0,2sinbcosb 3cos2b 0,sin2b 3cos2b 0,1 2 sin2b 3 2 cos2b 0,sin30 sin2b cos30...
初三銳角三角形函式還沒學到,求詳解
你好,prom1se 如圖所示 證明 1 在rt abc中,tana bc ac tanb ac bc tana tanb bc ac ac bc bc ac bc ac 而bc ac ab 又 s abc 1 2 ab cd 1 2 bc ac ab cd bc ac tana tanb ab a...