數學題 有關二次函式的問題 追加50分

時間 2023-04-25 12:36:03

1樓:小蟲眼

1)根據二次函式的對稱軸的數學公式 x=-b/2a可得b=-2a(1)

2)根據二次函式的最值公式 y=4ac-b²/4a可得4ac-b²=60a把(1)的條件代入可得 即(4ac-4a²)/4a=c-a=15,c=a+15

3)因為方程的2個根為x1 x2,根據韋達定理有x1 +x2=-b/a ,x1 *x2=c/a

把(1)的條件代入可得。

即x1+x2=2,x1x2=1+15/a

x1³+x2³

x1+x2)(x1²-x1x2+x2²)=x1+x2)[(x1+x2)²-3x1x2]=2[(2)²-3(1+15/a)]

2-90/a=17

a=-6∴b=-2a=12,c=a+15=9看明白了嗎?

2樓:匿名使用者

關於x=1對稱。

b/2a=1,b=-2a

最大值(4ac-b²)/4a=15

即(4ac-4a²)/4a=c-a=15,c=a+15代入解析式得y=ax²-2ax+a+15

由韋達定理x1+x2=2,x1x2=1+15/a第3個條件是立方嗎?如果是的話。

x1³+x2³

x1+x2)(x1²-x1x2+x2²)=x1+x2)[(x1+x2)²-3x1x2]=2[(2)²-3(1+15/a)]

2-90/a=17

a=-6∴b=-2a=12,c=a+15=9

3樓:匿名使用者

詳細的不寫了 很麻煩。

首先 對稱軸公式解決ab關係。

然後最大值 就是(4ac-b2)/4a=15 解決ac最後進入到最後立方根公式 韋達定理。

4樓:零段低手

影象關於直線x=1對稱,最大值為15

y=a(x-1)^2+15

ax^2-2ax+a+15=0

x1)^3+(x2)^3=(x1+x2)[(x1)^2-x1x2+(x2)]

2[(x1+x2)^2-3x1x2]

2[2*2-3*(a+15)/a]

8-6(a+15)/a=17

9a=-6a-90

15a=-90

a=-6b=-2a=12

c=a+15=9

50分求一道二次函式問題

數學二次函式(好的追加100分)

5樓:匿名使用者

1,c點或b點的座標?

2,使得△opq的頂點o或o在拋物線上中的拋物線?

二次函式(好的追加200分)

6樓:匿名使用者

解:(1)將點a、b座標代入拋物線的解析式,解得拋物線的解析式為y=

5x-22)a(-1,0),b(4,0),c(3,-2) ,d(0,-2)四邊形abcd是等腰梯形。

過a、b作dc的垂線,垂足是a′、b′

則直線y=kx+1過矩形abmn的中心p( ,1)時,直線平分矩形abmn的。

面積,也就平分等腰梯形abcd的面積。

將點p座標代入直線的解析式,求得k=-4/33)由於題目中缺少圖象,所以沒法解答,請補充圖象。

7樓:天使快樂

1)將a點和c點代入方程,得a=1/2 b=-2 則方程為y=(1/2)x^2-3/2x-2

2)現在有點事情過會。

一道二次函式問題,回答後20分附加

8樓:

y=的開口向上,只有最小值。且不論a取多少,最小值都是1.

因為a的值沒有確定,所以,函式圖象在水平面可以移動,函式的最大值就不能求。

請確信原題條件沒有出錯。

9樓:匿名使用者

函式y的對稱軸是x=a。此時的討論a的情況,即①a≤1②13.。

根據數形結合。

f(1)=為最小值,f(4)=8-4a+為最大值。

因為f(1)*f(4)>0恆成立,所以最小值是f(a)=1,而又有f(4)-f(1)=1/2[(a-4)^2-2]-1/2[(a-1)^2-2]=-3/2(2a-5)當1f(4),f(1)為最大值。

f(1)為最大值,f(4)為最小值完畢。

二次函式題,數學題 二次函式

xx外賣 川菜,粵菜和本幫菜系,好吃不貴,消費十二元起送!持此名片還可以免賠獲得一次價值十二元的試吃機會。快點撥打 諮詢吧!聯絡人 xx外賣連鎖董事長 一個星期內要把這個回答 五十次,不然全家人都會遭到厄運!採納為最佳答案可以解咒!該題條件不足,無法求的二次函式的函式表示式。估計提問者少寫了一個條件...

有關二次函式的數學問題,二次函式數學問題

1 0,m 2 令判別式 小於0即可。3 旋轉180 開口向下 頂點,對稱軸不變 把原方程化成頂點式。x b 2a 4ac b 4a 前面加個負號 即可得到所求方程。4 值恆為負數,即開口向下,且與x軸無交點。則令m 0 且判別式小於0 解不等式組即可。1 y x 2 m x m x 2x x 1 ...

數學題!一元二次, 急 數學題! 一元二次

假設每張票售價x元,則能賣出的票的數量為 180 x 4 0.5 10總共得錢 y x 180 x 4 0.5 10 20 x 13 x 是二次函式,所以y要取最大值,必須x 13 2 6.5 元,此時能賣出 130 張票,總共得錢845元 4 180 720元。設漲價x次,賣的總價為 4 0.5x...