1樓:原遠哈衣
如果是直線方程那應該是相對比較容易的
首先要知道直線引數方程的意義是什麼
其最基本形式:
x=a+tcosθ
y=b+tsinθ
其中的引數是t
而這個標準方程各常量意義是這樣的:a和b表示該直線經過一個確定的點(a,b)
cosθ
和sinθ表示的是直線傾角的三角函式值
以y=根號3
x+2為例
我們在上面隨意取一個點(0,2)
那麼a=0,b=2
傾角是60度
所以cosθ是1/2
sinθ是二分之根三
由此就可以寫出引數方程:x=1/2
ty=2+t*二分之根三(t為引數)
可以發現
ab並不是唯一確定的值
也就是說
只要有一個確定的點和一個確定的傾角就可以確定出一個引數方程。t取不同的值時,確定的是不同的點,而這些點的集合就是這個引數方程所表達的直線。
理解引數方程各常量的意義之後才能熟練掌握其應用。
2樓:南宮懷雨姬賦
關鍵就是設出一個引數,把原來的普通方程中的x,y替換,這是總體思路,但到具體的問題得具體分析,設定這個引數是有技巧的,方法多種多樣,不唯一.
例如對於圓的方程:
x^2+y^2=4,設定引數方程為:x=2cosa,y=2sina再例如橢圓方程,x^2/9+y^2/16=1,設定引數可為:x=3cosa,y=4sina
你自己可以進行歸類哈
高中數學直線方程怎樣化為引數方程
花開花落 如果是直線方程那應該是相對比較容易的 首先要知道直線引數方程的意義是什麼 其最基本形式 x a tcos y b tsin 其中的引數是t 而這個標準方程各常量意義是這樣的 a和b表示該直線經過一個確定的點 a,b cos 和sin 表示的是直線傾角的三角函式值 以y 根號3 x 2為例 ...
擺線引數方程推導,擺線的引數方程如何化為普通方程? x r t sint y r 1 cost
過原點半徑為r的擺線引數方程為 在這裡實引數t是在弧度制下,圓滾動的角度。對每一個給出的t,圓心的座標為 rt,r 通過替換解出t可以求的笛卡爾座標方程為 擺線的第一道拱由引數t在 0,2 區間內的點組成。擺線也滿足下面的微分方程。擴充套件資料 一般地,在平面直角座標系中,如果曲線上任意一點的座標x...
引數方程是什麼意思,直線的引數方程中的t的含義是什麼?t可以為負數嗎?t為負數又是什麼意思?
定義 一般的,在平面直角座標系中,如果曲線上任意一點的座標x,y都是某個變數 t 的函式,即x f t y g t 並且對於 t 的每一個允許值,由上述方程組所確定的點m x,y 都在這條曲線上,那麼上述方程則為這條曲線的引數方程,聯絡x,y的變數 t 叫做變引數,簡稱 引數,相對於引數方程而言,直...