1樓:匿名使用者
∵sina,coa是方程x²-kx-(k+1)=0的兩個實根∴sina+cosa=k sinacosa=﹣(k+1)∴(sina+cosa)²=sin²a+cos²a+2sinacosa=1+2sinacosa
∴k²+2(k+1)-1=0 ∴k²+2k+1=0
∴(k+1)²=0 ∴k=﹣1∴sina+cosa=﹣1 sinacosa=0 ∴sina=0 cosa=﹣1 或 sina=﹣1 cosa=0
∵a∈(0,2π) ∴a=π、3π/2
2樓:匿名使用者
x²-kx-(k+1)=(x+1)[x-(k+1)]=02個根,一個是-1,一個是(k+1)
以下分情況討論
(1)sina=-1;a=3π/2;cosa=0另一根-(k+1)=0; k=-1
(1)cosa=-1;a=π;sina=0另一根-(k+1)=0; k=-1
已知指數函式y a x(a,且a 1在區間上的最大值與最小值的差是1,求實數a的值
廬陽高中夏育傳 y a x在沒有確定a與1的關係要分兩種情況 1 如果a 1函式y a x在 1,1 上是增函式,右端點值f 1 最大 f 1 a f 1 1 a 其差a 1 a 1 a 2 a 1 0 由求根公式得 a 1 5 2,2 如果0 f 1 1 a f 1 a 最小 1 a a 1 a ...
已知定義在 1,1 上的函式f x 滿足f 1 2 1,且對任意x,y1,1 ,都有f x f y f x y
我來回答看看。感覺這道題技巧性還比較高。第一問,要求通項公式,我們首先要證明函式的一些特性。由題意可知,f x f x f x x 1 x 2 即0 f 0 f 0 0 這是第一個 f 0 f x f 0 x 1 0 即 f x f x 又因為其定義域關於原點對稱,所以該函式為奇函式 這是第二個 上...
已知f x 是定義在實數集R上的函式,且f x 2 1 f x1 f x ,f 2 1 根號3,則f 2019 等於多少
韓增民鬆 二樓的解答完全正確,問題是一般人看不太懂,我在這裡細化一下,能使樓主看明白 f x 2 1 f x 1 f x f 2 1 3 f x 2 f x 1 1 f x f x 4 f x 2 2 f x 2 1 1 f x 2 1 f x 1 1 f x 1 f x 1 1 f x 1 f x...