用數學歸納法證明 1 ,用數學歸納法證明 1 1 2 1 3 1 4 1 2n 1 1 2n 1 n 1 1 n 2 1 2n

時間 2021-08-30 09:35:56

1樓:我愛五子棋

1, n=1時,左邊=1-1/2=1/2.右邊=1/2成立

2,設n=k時成立就是 1-1/2+1/3-1/4+...+1/(2k-1)-1/2k=1/(k+1)+...1/(2k)

當 n=k+1時,則1-1/2+1/3+...+1/(2k-1)-1/2k+1/(2k+1)-1/(2k+2)=1/(k+1)+...1/(2k)+1/(2k+1)-1/(2k+2)=1/(k+2)+...

+1/(2k)+1/(2k+1)+1/(k+1)-1/(2k+2)

下面證明 1/(k+1)-1/(2k+2)=1/(2k+2)???

1/(k+1)-1/(2k+2)=(2-1)/(2k+2)=1/(2k+2) !!!

所以 1-1/2+1/3+...+1/(2k-1)-1/2k+1/(2k+1)-1/(2k+2) = 1/(k+1)+...1/(2k)+ 1/(2k+1)+1/(2k+2)就是說 n=k+1時成立所以對於一切n都會成立

2樓:匿名使用者

n=1自己證明

假設n=k成立,即:1-1/2+1/3-1/4+...+1/2k-1-1/2k=1/k+1+1/k+2+...+1/2k

則,當n=k+1時:

1-1/2+1/3-1/4+...+1/2k+1-1/2k+2=1/k+1+1/k+2+...+1/2k+1/2k+1-1/2k+2

用數學歸納法證明:1-1/2+1/3-1/4+...+1/2n-1-1/2n=1/n+1+1/n+2+...+1/n+1

3樓:

n=1時,左=1-1/2=1/2 右面=1/2成立,

假設n=k時,成立:1-1/2+1/3-1/4+...+1/2k-1-1/2k=1/k+1+1/k+2+...+1/k+k

則n=k+1時,

右=1/(k+2)+1/(k+3)+...+1/(k+1+k)+1/(2k+2)

=1/(k+2)+1/k+3)+...+1/(2k+1)+1/(2k+2).........................1

左=[1-1/2+1/3-1/4+...+1/2k-1-1/2k]+1/(2k+1)-1/(2k+2)

=1/(k+1)+1/(k+2)+...+1/(k+k)+1/(2k+1)-1/(2k+2)

=1/(k+2)+1/(k+3)+...+(2k+1)+1/(k+1)-1/(2k+2)

=1/(k+2)+1/(k+3)+...+(2k+1)+(2k+2-k-1)/[(k+1)(2k+2)]

=1/(k+2)+1/(k+3)+...+(2k+1)+(k+1)/[(k+1)(2k+2)]

=1/(k+2)+1/(k+3)+...+(2k+1)+1/(2k+2).............................2

1式=2式

所以n=k+1時也成立,

所以原式成立。

4樓:匿名使用者

1:顯然n=1成立,n=2也成立

2:假設n=k成立,有1-1/2+1/3-1/4+...+1/(2k-1)-1/2k=1/(k+1)+1/(k+2)+...+1/2k

當n=k+1時,左邊=1-1/2+1/3-1/4+...+1/(2k-1)-1/2k+[1/(2k+1)-1/(2k+2)]

=1/(k+1)+1/(k+2)+...+1/2k+[1/(2k+1)-1/(2k+2)] (首位兩項做減法有)

=1/(k+2)+...+1/(2k+1)+1/(2k+2)所以n=k+1時也成立。證畢

1-1/2+1/3-1/4+……+1/(2n-1)-1/2n=1/(n+1)+1/(n+2)+……1/2n 用數學歸納法證明

5樓:匿名使用者

當n=1時,1-1/2=1/2成立

假設dun=k(k≥zhi1)時dao等式成立,即:

1-1-1/2+1/3-1/4+……專+1/(2k-1)-1/2k=1/(k+1)+1/(k+2)+……1/2k

則n=k+1時

左邊=(1-1/2+1/3-1/4+……+1/(2k-1)-1/2k)+(1/2k+1)-(1/2k+2)

=(1/(k+1)+1/(k+2)+……1/2k)+(1/2k+1)-(1/2k+2)

=1/(k+2)+……1/2k+【1/(k+1)+(1/2k+1)-(1/2k+2)】

=1/(k+2)+……1/2k+【(1/2k+1)+(1/2k+2)】

所以屬當n=k+1時等式也成立

綜上,等式成立,得證

6樓:我不是他舅

n=11-1/2=1/2

成立假設n=k成立,k≥1

1-1/2+1/3-1/4+……

版+1/(2k-1)-1/2k=1/(k+1)+1/(k+2)+……+1/2k

則n=k+1

1-1/2+1/3-1/4+……+1/(2k-1)-1/2k+1/(2k+1)-1/(2k+2)

=1/(k+1)+1/(k+2)+……+1/2k+1/(2k+1)-1/(2k+2)

=1/(k+2)+……+1/2k+1/(2k+1)+[1/(k+1)-1/(2k+2)]

=1/[(k+1)+1]+……+1/2k+1/(2k+1)+[2/(2k+2)-1/(2k+2)]

=1/[(k+1)+1]+……+1/[2(k+1)]

成立綜上權

原命題成立

用數學歸納法證明1 n 1 ,用數學歸納法證明1 n 1 n 1 1 n 2 1 n 1 n N ,n

n 2略 n k時有1 k 1 k 1 1 k 1k 2令a 1 k 1 k 1 1 k 1則n k 1 1 k 1 1 k 2 1 k 1 a 1 k 1 k 1 1 k 1 因為1 k 1 1 k 1 1 k 2 1 k 1 所以a 1 k 1 k 1 1 k 1 a 1 k 1 k 1 1 k...

用數學歸納法證明 1 2n,用數學歸納法證明 1 2 n 1 2n n

晴天雨絲絲 顯然n 1時,兩邊等於1,成立.設n k時,不等式成立,即 1 3 2 3 n 3 k k 1 2 2,則n k 1時,1 3 2 3 k 3 k 1 3 k k 1 2 2 k 1 3 k 1 2 k 2 2 k 1 k 1 2 k 2 2 4 k 1 k 1 1 2 2.即n k 1...

用數學歸納法證明 1 1 2 2

證明 1 1 2 2 1 3 2 1 n 2 2n 1 n n 2,n屬於n 1 1 1 2 2 5 4 3 2 2 設 1 1 2 2 1 3 2 1 k 2 2k 1 k,1 1 2 2 1 3 2 1 k 2 1 k 1 2 2k 1 k 1 k 1 2 2k 3 4k 2 2k k 2 2k...