一筐雞蛋,拿正好拿完,拿還剩,拿正好拿完,拿還剩,拿

時間 2022-04-26 23:25:02

1樓:星羅棋佈

1449

①因為1個1個拿、3個3個拿、7個7個拿、9個9個拿正好拿完,說明雞蛋數是1、3、7、9的公倍數

而1、3、7、9的最小公倍數為63,所以雞蛋數肯定是63的倍數。

②因為5個5個拿還剩4個,所以雞蛋數除以5餘4,我們知道5的整除數個位數為0和5。

因此雞蛋數,的個位數只能是9。

③因為6個6個拿還剩3個,而63除以6,商10餘3,

因此雞蛋數是63的奇數倍,,

④由以上推算可知雞蛋數是63的倍數,且個位是9,

則雞蛋數為63×(10x+3)。可能是63×23、63×33、63×43………

⑤因為2個2個拿、4個4個拿、8個8個拿還剩1個,所以這個數是單數,而2、4、8的最小公倍數為8,

所以只要滿足了8,而2和4也就滿足了。

⑥63除以8,餘數是7;23除以8,餘數是7,。餘數相乘為7×7=49,49除以8,餘數是1,即(63×23)÷8=1449÷8=181…1

綜上所述,雞蛋數最少為1449個。

2樓:閒談勤記

打死你個龜兒子,來回拿了快十次了還數不出來!

求答案 ? 一筐雞蛋: 1個1個拿,正好拿完。 2個2個拿,還剩1個。 3個3個

3樓:sbc的太陽

答:369個雞蛋;

1.解析:

正好拿完,表示整除;

有剩餘的,表示餘數,有餘數就是說(被除數-餘數)可以被除數整除。 "比如4個4個拿還剩1個"就是說"雞蛋個數-1 可以 被4整除",即正好拿完;

2.解題步驟:

先看幾組數,這裡給編號分別為1 2 3 4 5 6 7 8 9;

滿足1的是所有數,不考慮;

滿足8的一定滿足2和4,因此2和4不考慮;

滿足9的一定滿足3,所以3不考慮;

因此先算滿足 1 2 3 4 5 6 7 8 9的資料,因為1 2 3 4不考慮,只要滿足5 6 7 8 9就可以了;

因為6=2x3 包含在8 9 中,最後驗算;

3.因此得到:

5的情況是7x8x9=504 504÷5=100餘4 滿足;

7的情況是5x8x9=360 360÷7=51餘3 不滿足餘5,取360的4倍1440,360x4÷7=205餘5滿足;

8的情況是5x7x9=315 315÷8=39餘3 不滿足餘1,取315的3倍945 ,315x3÷8=118餘1滿足;

9的情況是5x7x8=280 280÷9=34餘4 不滿足餘0,取5x7x8x9=2520;

計算滿足5 7 8 9的資料為:504 + 1440 + 945 + 2520 = 5409;

驗算這個資料 同時滿足 5 7 8 9條件;

計算5x7x8x9=2520,因此滿足條件的更小資料是5409-2520x2=369;

驗算369這個資料是否滿足6的情況,不滿足就取其倍數。 369÷6=61餘3正好滿足。;

驗算369÷1=369餘0;

驗算369÷2=184餘1;

驗算369÷3=123餘0;

驗算369÷4=92餘1;

驗算369÷5=73餘4;

驗算369÷6=61餘3;

驗算369÷7=52餘5;

驗算369÷8=46餘1;

驗算369÷9=41餘0;

所以答案為369。

4樓:豆其英磨香

1個1個拿,正好拿完。3個3個拿,正好拿完。7個7個拿,正好拿完。9個9個拿,正好拿完。此數為7*9=63的倍數。設此數為63n

2個2個拿,還剩1個。4個4個拿,還剩1個。5個5個拿,還剩1個,8個8個拿,還剩1個。此數為5*8=40的倍數+1個.設此數為40k+1

即63n=40k+1

k=(63n-1)/40因為n,k均為正整數所以當n=7時,k的最小值為11

所以這筐雞蛋的最小值為63*7=40*11+1=441個。

2個2個拿,還剩1個。4個4個拿,還剩1個。8個8個拿,還剩1個。說明籃子裡的雞蛋個數為奇數。

3個3個拿,正好拿完。7個7個拿,正好拿完。9個9個拿,正好拿完。說明籃子裡的雞蛋個數為3、7與9的倍數。

5個5個拿,還剩1個,說明個位數為1或6,最終個位數為1.。

綜合上面所說,最少的應該是441,

這個數是2.4.5.8的倍數多1,是1.3.7.9的倍數,是6的倍數多3

∴是441個

3x7x3=63

63對於4,5來說都餘3,對於6餘3,對於8餘7,為了滿足題意需要3x7x3=63在乘以一個不被2整除數

3x7x3x7=63x7=441

1個1個拿,正好拿完。

......................441除1等於441

2個2個拿,還剩1個。

......................441除2等於220餘1

3個3個拿,正好拿完。

......................441除3等於147

4個4個拿,還剩1個。

.....................441除4等於110餘1

5個5個拿,還剩1個

.....................441除5等於88餘1

6個6個拿,還剩3個。.....................441除6等於73餘3

7個7個拿,正好拿完。.....................441除7等於63

8個8個拿,還剩1個。.....................441除8等於55餘1

9個9個拿,正好拿完。.....................441除9等於49

朋友,請採納正確答案,你們只提問,不採納正確答案,回答都沒有勁!!!

朋友,請【採納答案】,您的採納是我答題的動力,如果沒有明白,請追問。謝謝。

5樓:新野旁觀者

求答案 ?

一筐雞蛋:

1個1個拿,正好拿完。

2個2個拿,還剩1個。

3個3個拿,正好拿完。

4個4個拿,還剩1個。

5個5個拿,還剩1個

6個6個拿,還剩3個。

7個7個拿,正好拿完。

8個8個拿,還剩1個。

9個9個拿,正好拿完。

問筐裡有多少雞蛋?

1個1個拿正好拿完,3個3個拿正好拿完,7個7個拿正好拿完,9個9個拿正好拿完,框子裡雞蛋的個數是4*9=63的倍數。

2個2個拿剩1個,5個5個拿剩餘1個,個位數是1。

所以從以下數中找: 63×7、 63×17 、63×27 、63×37……

所以最小數是441個

6樓:載建碧盼柳

1、因為:「3個3個拿,正好拿完」、「7個7個拿,正好拿完」、「9個9個拿,正好拿完」

所以:雞蛋總數一定能被3、7、9的最小公倍數整除,即能被63整除;

2、因為:「5個5個拿,還剩1個

」,我們知道能被

5整除的數,其個位一定是5或者

0;所以:能被

5整除還能餘

1的數的個位一定是6或者

1;3、因為:「2個2個拿,還剩1個」,因此,雞蛋總數一定是奇數;

所以:雞蛋總數的個位一定為1;

4、由以上推斷可知:雞蛋總數可能為,63*7

或者63*17

....

5、因為:雞蛋總數能被63整除,即也能被3整除

所以:「6個6個拿,還剩3個」與「2個2個拿,還剩1個」是一回事,就不用再考慮

6、因為:8是4

的整數倍,則:雞蛋8個8個拿還剩1個,那麼4個4個拿就一定也能剩1個;

所以:「4個4個拿,還剩1個」和「8個8個拿,還剩1個」,我們只要考慮「8個8個拿還剩1個」的情況就可以了

。7、經驗證:63*7

=441

,剛好能被

8整除餘1;

所以:雞蛋總數為

441個

7樓:檢玉芬桑璧

1個1個拿、3個3個拿、7個7個拿、9個9個拿,都正好拿完,這個數是1、3、7、9的公倍數

1、3、7、9的最小公倍數=7×9=63,這個數是63的整倍數。令這個數=63m

6個6個拿,剩3個,這個數是奇數,m為奇數。

2個2個拿、4個4個拿、5個5個拿、8個8個拿,都剩1個,這個數減1,能同時被2、4、5、8整除。

2、4、5、8的最小公倍數=5×8=40,令這個數=40n+1令63m=40n+1

n=(63m-1)/40=(40m+23m-1)/40=m+(23m-1)/40

要n為正整數,m最小為7

63m=63×7=441

這筐雞蛋至少有441個。

8樓:匿名使用者

4個4個拿,還剩1個。 5個5個拿,還剩4個,這筐雞蛋有9+20k(k是自然數)個;

6個6個拿,還剩3個。 7個7個拿,正好拿完,這筐雞蛋有21+42m(m是自然數)個;

20與42的最小公倍數是420,所以這筐雞蛋有189+420n(n是自然數)個;

8個8個拿,還剩1個。 9個9個拿,正好拿完,這筐雞蛋有9+72p(p是自然數);

420與72d的最小公倍數是2520,所以這筐雞蛋,有1449+2520q(q是自然數).

已滿足"1個1個拿,正好拿完。 2個2個拿,還剩1個。 3個3個拿,正好拿完".

所以這筐雞蛋,最少有1449個。

9樓:鯟精熱

1個1個拿,正好拿完。

說明是整數

2個2個拿,還剩1個。

說明是奇數

3個3個拿,正好拿完。

說明是3的倍數

4個4個拿,還剩1個。

說明是4的倍數➕1

5個5個拿,還差1個。

說明尾數是4或者9

6個6個拿,還剩3個。

說明是6的倍數➕3

7個7個拿,正好拿完。

說明是7的倍數

8個8個拿,還剩1個。

說明是8的倍數➖1

9個9個拿,正好拿完。

說明是9的倍數

那麼也是3的倍數。

所以 根據倍數資訊

這個數是7和9的 公倍數

最小的也就是 63

為了保證這個數 是奇數

所以必須是63的奇數倍

而且這個數的尾數 必須是4或者9

所以只有13倍符合 就是63✘13819

10樓:匿名使用者

2個2個拿、4個4個拿、8個8個拿都剩一個,這個數是奇數。令這個數是8m+1。

5個5個還差1個,這個數+1,能被5整除,這個數又是奇數,因此這個數的個位數字是9。

1個1個拿、3個3個拿、7個7個拿、9個9個拿都正好拿完,這個數是7和9的公倍數。7和9的最小公倍數是63,令這個數是63n。

6個6個拿剩3個,這個數是9的奇數倍,又這個數是63的倍數,因此這個數是63的奇數倍。

這個數的個位數字是9,由於63的個位數字是3,而只有3×3的個位數字是9,因此n的個位數字是3。

令8m+1=63n

m=(63n-1)/8=(64n-n-1)/8=8n -(n+1)/8

要m是正整數,(n+1)能被8整除,又n的個位數字是3,n最小為23

63×23=1449

筐裡至少有1449個雞蛋。

求解 一筐雞蛋 拿,正好拿完。拿,還剩。拿,正好拿完

根據給出的9個條件,可得出9個判斷 1 1的倍數,即任意非零整數 2 不能被2整除,是奇數,數目與2相除的餘數為13 3的倍數 4 不能被4整除,不是4的倍數,數目與4相除的餘數為15 不能被5整除,不是5的倍數,數目與5相除的餘數為46 不能被6整除,不是6的倍數,數目與6相除的餘數為37 7的倍...

一筐雞蛋 拿,正好拿完。拿,還剩。拿,正好拿完。拿,還

答案是1449個,被9整除,除以8餘1,除以5餘4,根據這些條件,可以得到雞蛋的數量的個位是9,還是9的倍數,列舉如下,9,99,189,279,369 驗證一下,發現,滿足條件的最小數是1449 除以8餘1,還能被7整除 設雞蛋個數為x 分析 1個1個拿正好拿完 7個7個拿正好拿完 說明x是7的倍...

一筐雞蛋 拿,正好拿完。拿,還剩。拿,正好拿完。拿,還

2個2個拿 4個4個拿 8個8個拿都剩一個,這個數是奇數。令這個數是8m 1。這個數 1,能被5整除,這個數又是奇數,因此這個數的個位數字是9。1個1個拿 3個3個拿 7個7個拿 9個9個拿都正好拿完,這個數是7和9的公倍數。7和9的最小公倍數是63,令這個數是63n。6個6個拿剩3個,這個數是9的...