1樓:員木蘭喬識
由方程e^y+xy-e=0確定的函式是y=f(x),因此在對方程兩邊對於x求導時,要把y看成是x的函式,這樣就可以得到e^y*y'+y+xy'=0
從而得到y'=-y/(e^y+x)
注:y'=dy/dx
2樓:苑斐範略
求導定義:函式y=f(x)的導數的原始定義為
y'=f'(x)=lim(δx→0)|(δy/δx)=lim(δx→0)|δy/lim(δx→0)|δx=dy/dx,
其中δy=f(x+δx)-f(x);
實數c的導數(c)'=0
導數的四則運演算法則:u=u(x),v=v(x);
加減法原則:(u±v)'=u'±v'
證明:(u±v)'=lim(δx→0)|(δ(u±v)/δx)=d(u±v)/dx,
其中δ(u±v)=u(x+δx)±v(x+δx)-u(x)±v(x)
=[u(x+δx)-u(x)]±[v(x+δx)-v(x)]
=δu±δv,
則(u±v)'=lim(δx→0)|(δ(u±v)/δx)
=lim(δx→0)|(δu/δx)±lim(δx→0)|(δv/δx)
=(du/dx)±(dv/dx)
=u'±v'
乘法法則(uv)'=u'v+uv'
證明:則(uv)'=lim(δx→0)|(δ(uv)/δx)=d(uv)/dx,
其中δ(uv)=u(x+δx)v(x+δx)-u(x)v(x)
=[u(x+δx)v(x+δx)-u(x)v(x+δx)]+[u(x)v(x+δx)-u(x)v(x)]
=[u(x+δx)-u(x)]v(x+δx)]+u(x)[v(x+δx)-v(x)]
=δu×v(x+δx)]+u(x)×δv
則(uv)'=lim(δx→0)|[(δu×v(x+δx)]+u(x)×δv)/δx]
=lim(δx→0)|[δu×v(x+δx)/δx]+lim(δx→0)|[u(x)×δv/δx]
=lim(δx→0)|[δu×v(x+δx)/δx]×lim(δx→0)|v(x+δx)+lim(δx→0)|u(x)×lim(δx→0)|[u(x)δv/δx]
=(du/dx)vx+u(x)(dv/dx)
=u'(x)v(x)+u(x)v'(x)
除法法則:(u/v)'=(u'v-uv')/v²
證明:與乘法法則的證法類似,此處略!
複合函式的求導法則:y=f(u)=f(u(x)),u=u(x),則y'=f'(u(x))×u'(x)
簡證:y=f(u)=f(u(x)),u=u(x),
則y'=lim(δx→0)|(δy/δx)
=lim(δx→0)|[(δy/δu)×(δu/δx)]
=lim(δx→0)|(δy/δu)×lim(δx→0)|(δu/δx)
=(dy/du)×(du/dx)
=f'(u(x))×u'(x)
e^y+xy-e=0——原隱函式,其中y=f(x)
兩邊求導得(e^y+xy-e)'=0'
左邊先由求導的加減法原則可知(e^y+xy-e)'=(e^y)'+(xy)'-(e)',
由常數的導數為0可知原隱函式兩邊求導後為:(e^y)'+(xy)'=0
由複合函式的導數可知(e^y)'=e^y×y',其中(e^x)'=e^x;
由求導的乘法法則可知(xy)'=y+xy',
即原隱函式的導數為e^y×y'+y+xy'=0(其中y'=dy/dx)
接下來求函式y的過程就是傳說中的求解微分方程,
這個求解通常都比較難,而且往往是非常難!
3樓:釋奧凌茜
設y=f(x)方程:
e^(f(x))+xf(x)-e=0
在方程的兩邊對x求導數
e^(f(x))
f'(x)+f(x)+xf
'(x)=0
.........①
解出:f
'(x)=
-f(x)/[x+e^(f(x))]即y
'=-y/(x+e^y)...........②這說明:在.①中把f(x),換成
y,就是把y看成x
的函式來
求導;有
e^y*
y'+y+
xy'=0
4樓:諸葛晶瀅雷錦
很簡單啊。
隱函式為f(x,y)=e^y+xy-e
這個隱函式的求導有個公式dy/dx=f(x,y)對x的偏導除以f(x,y)對y的偏導,並加上一個負號。(不會打偏導負號,見諒)即:dy/dx=-fx/fy
dy/dx=--y/(e^y+x)
求由方程組x ucosv y usinv u z所確定的函式z z x,y 的所有二階偏導數
思路可行啊,不過結果不對,最後求出來的只是二元函式x ucosv對u,v的偏導數 由dx udcosv cosvdu u sinv dv cosvdu,得 x v u sinv x u cosv。不是導數,倒過來得到的也不是 v x。把這個求微分的思路延伸一下,在x u cosv,y u sinv,...
求由方程sin xy In y x X所確定的隱函式y在x 0處的導數
丘冷萱 將x 0代入方程,解得 lny 0,即y 1兩邊對x求導得 cos xy y xy 1 y x y 1 1將x 0,y 1代入上式,得 1 y 1 1,則y 1因此函式在x 0處的導數為 y 1 數學之美 團隊為您解答,若有不懂請追問,如果解決問題請點下面的 選為滿意答案 琴儉嘉緞 對方程s...
求由方程y x lny所確定的隱函式的導數dy
y x lny 兩邊同時求導得 dy dx 1 1 y dy dx 1 1 y dy dx 1 dy dx 1 1 1 y y y 1 擴充套件資料對於一個已經確定存在且可導的情況下,我們可以用複合函式求導的鏈式法則來進行求導。在方程左右兩邊都對x進行求導,由於y其實是x的一個函式,所以可以直接得到...