1樓:夷炎金項明
利用一元二次方程根的判別式( △=b²-4ac )可以判斷方程的根的情況
。一元二次方程 ax²+bx+c=0(a≠0)的根與根的判別式 △=b²-4ac有如下關係:
①當△>0時,方程有兩個不相等的實數根;
②當△=0時,方程有兩個相等的實數根;
③當△<0時,方程無實數根,但有2個共軛復根。
上述結論反過來也成立。
擴充套件資料:
一元二次方程成立必須同時滿足三個條件:
①是整式方程,即等號兩邊都是整式,方程中如果有分母;且未知數在分母上,那麼這個方程就是分式方程,不是一元二次方程,方程中如果有根號,且未知數在根號內,那麼這個方程也不是一元二次方程(是無理方程)。
②只含有一個未知數;
③未知數項的最高次數是2
參考資料:
搜狗百科-一元二次方程
2樓:裔清竹衷午
看△的大小。
公式為△=b*b-4ac.
>0時有兩個實數根
=0有一個或兩個相等的實數根
<0時沒有實數根
3樓:延藹衛採波
一、在一個前提下:
一元二次方程的一般式為
ax²+bx+c=0
二、令△=b²-4ac,則有三種情況:
1、△>0時,方程有兩個不相同的實數根
2、△=0時,方程有兩個相同的實數根(亦可看作一個實數根)3、△<0時,方程無實數根
一、一元二次方程的解法;
(1)直接開平方法
(2)公式法
(3)因式分解法:要掌握分解的方法,注意乘法公式及x2+(a+b)x+ab=(x+a)(x+b)
的運用二、.
一元二次方程根的判別式
判別式為:
=0方程有兩個相等的實數根
>0方程有兩個不相等的實數根
<0方程沒有實數根
三、一元二次方程的應用是很重要的考點,要認真審題:
一審二設
三列四解
五驗六答
怎樣判斷一個一元二次方程有無實數根?
4樓:匿名使用者
利用一元二次方程
根的判別式( △=b²-4ac )可以判斷方程的根的情況 。
一元二次方程 ax²+bx+c=0(a≠0)的根與根專的判別式屬 △=b²-4ac有如下關係:
①當△>0時,方程有兩個不相等的實數根;
②當△=0時,方程有兩個相等的實數根;
③當△<0時,方程無實數根,但有2個共軛復根。
上述結論反過來也成立。
5樓:粽粽有料
一、在一個前提下復:制
一元二次方程的一般式為 ax²+bx+c=0二、令bai △=b²-4ac,則有三du種情況:
1、△>0時,方程有兩zhi個不相同dao的實數根2、△=0時,方程有兩個相同的實數根(亦可看作一個實數根)3、△<0時,方程無實數根
一、一元二次方程的解法;
(1)直接開平方法
(2)公式法
(3)因式分解法:要掌握分解的方法,注意乘法公式及x2+(a+b)x+ab=(x+a)(x+b) 的運用
二、. 一元二次方程根的判別式
判別式為:
=0方程有兩個相等的實數根
>0方程有兩個不相等的實數根
<0方程沒有實數根
三、一元二次方程的應用是很重要的考點,要認真審題:
一審 二設 三列 四解 五驗 六答
怎麼判斷一元二次方程實數根的情況?
6樓:千山鳥飛絕
一元二次方程實數根的情況的判別公式為b²-4ac,其具體判別過程如下圖所示。
7樓:匿名使用者
一元二次方程的一般式為 ax²+bx+c=0令 △=b²-4ac,則
△>0時,方程有兩個不相同的實數根
△=0時,方程有兩個相同的實數根(亦可看作一個實數根)△<0時,方程無實數根
8樓:匿名使用者
關於x的一元二次方程,也就是 ax²+bx+c=0(a≠0),
當(1)b²-4ac>0時 方程有兩個不相等的實數根
(2)b²-4ac=0時 方程有兩個相等的實數根 此時,ax²+bx+c是一個完全平方式
(3)b²-4ac<0時 方程沒有實數根
拓展資料:
一元二次方程的基本概念:
1.只含有一個未知數,且未知數的最高次數是2的整式方程叫做一元二次方程。
2. 一般形式:ax²+bx+c=0(a≠0)。其中ax²、bx、c分別是二次項、一次項和常數項;a、b分別稱作方程的二次項係數和一次項係數。
3. a≠0是方程ax²+bx+c=0為一元二次方程的必要條件,是討論一元二次方程相關問題的前提,也用於對結論的檢驗。因為,若a=0,方程bx+c=0為一元一次方程。
4. 一元二次方程如果有解,它一定有兩個解,習慣上稱作一元二次方程的兩個根。
9樓:我是龍的傳人
兩不等實根 △=b²-4ac>0
兩相等實根 △=b²-4ac=0
無實根 △=b²-4ac<0
你的認可是我解答的動力,請採納..
怎麼判別一元二次方程有沒有實根
10樓:year小龜龜
算△,當△=0時有一個實數根。當△大於0時有兩個實數根。當△<0時沒有實數根.如y=ax²+bx+c △=b²-4ac
11樓:匿名使用者
根據b^2-4ac來判斷~~
我們知道一元二次方程的求根公式是
-b±√(b^2-4ac)
---------------
12樓:匿名使用者
a x^2+b x+c=0(a.b.c是常數,a不等於0)
如果b^2-4ac大於等於0,就有實根,反之沒有
(b^2代表b的平方)
13樓:匿名使用者
△>0 方程有兩個不相等的實數根. △=0 方程有兩個相等的實數根. △<0 方程沒有實數根.
ax^2+bx+c=0 這個方程中 △=b^2-4ac .
14樓:匿名使用者
ax*2+bx+c
△>0 方程有兩個不相等的實數根. △=0 方程有兩個相等的實數根. △<0 方程沒有實數根.
△=b^2-4ac
15樓:斜眼看世界
當b2-4ac>0時,方程有兩個不相等實數根
b2-4ac=0時,方程有兩個相等實數根
當b2-4ac<0時,方程沒有實數根。
16樓:匿名使用者
ax^2+bx+c=0
如果b^2-4ac>=0,就有根
17樓:muzhiben櫻
b^2-4ac>0 兩個不等實根
b^2-4ac=0 等根
b^2-4ac<0 無實根
怎麼判斷一元二次方程有沒有實數根?有幾個根?
18樓:佳爺說歷史
一元二次方程實數根的情況的判別公式為b²-4ac,其具體判別過程如下圖所示。
19樓:
當δ=b^2-4ac≥0時,x=[-b±(b^2-4ac)^(1/2)]/2a
當δ=b^2-4ac<0時,x=/2a(i是虛數單位)
即刀塔大於零,有兩個不相等的實根,刀塔等於零,有一個實根。刀塔小於零,無實根。
20樓:匿名使用者
通式ax²+bx+c=0
k=b²-4ac
k>0,兩個不等實根
k=0,一個實根,兩個相等實根
k<0,無實根
如何判斷一元二次方程有實數根嗎?
21樓:我不是他舅
ax²+bx+c=0
a≠0則判別式△=b²-4ac
b²-4ac<0,沒有實數根
b²-4ac=0,有兩個相等的實數根
b²-4ac>0,有兩個不同的實數根
22樓:唱歌斯蒂芬
利用△判斷 △=b2-4ac 若△大於0 則方程有兩個不相等的實數根 若△等於0 則方程有兩個相等的實數根 若△小於0 則方程無解〔無實數根〕△須在ax2+bx+c =0的基礎上成立
23樓:匿名使用者
二次項係數的平方減去4倍的一次項係數與常數項的積,如果大於等於0,就有實數根。
怎麼判斷一元二次方程有沒有實數根
24樓:
b^2-4ac<0 則無實根。
25樓:匿名使用者
《》=b^2-4ac<0 沒有實根
怎樣判別一元二次方程有幾個實數根 謝謝
26樓:一棟前塵
通過韋達定理判斷b^2-4ac的值,如果它大於0,則有2個實根,等於0則兩個相等的實根,也即一個根,如果小於0則沒有實根。
27樓:奇螢狐
當δ=b^2-4ac≥0時,x=[-b±(b^2-4ac)^(1/2)]/2a
當δ=b^2-4ac<0時,x=/2a(i是虛數單位)即δ大於零,有兩個不相回
等的實根,δ等答於零,有一個實根.δ小於零,無實根.
28樓:泈靈煌
ax²+bx+c=0
b²-4ac>0 兩個
<0 沒有
=0一個
一元二次方程根的判別式,一元二次方程根的判別式怎麼來的
一元二次方程ax2 bx c 0 a o 中根的判別式為b2 4ac,用符號 表示。當 大於0時,有兩個不同的實根 當 等於0時,有兩個相同的實根 當 小於0時,無實根。根的判別式是判定方程是否有實根的充要條件,也可以判斷出方程有幾個實數根。當 0時,方程有兩個實根x1和x2,分別為 b 2a和 b...
一元二次方程判別式怎麼來的,一元二次方程根的判別式怎麼來的
零寂瞳 一元二次方程ax bx c 0的判別式 b 4ac這個判別式是根據方程的求根公式得來的,因為ax bx c 0 a x b 2a b 4a c 0 x b b 4ac 2a 從求根公式可以看出,b 4ac的結果決定了方程是否具有實數根,或具有什麼樣的實數根,所以,就稱b 4ac為一元二次方程...
二次函式與一元二次方程的關係,一元二次方程和二次函式關係怎麼講
假設二次函式為 f x ax 2 bx c 一元二次方程為 ax 2 bx c 0 那麼方程的解就是函式曲線與x軸的交點橫座標。如果函式曲線與x軸沒有交點,則方程沒有實根 如果只有一個交點,則方程有一個重根 如果有兩個交點,則方程有兩個實根。 張家主任 一個二次函式影象如果與x 軸有兩個交點,那麼這...