已知數列an滿足a1 1,an 1 an 1 n n 1 ,則an

時間 2021-08-11 17:53:23

1樓:手機使用者

(an+1)-an=1/n-1/(n+1)an-a(n-1)=1/(n-1)-1/n::

a2-a1=1-1/2

累加可得(an+1)-a1=1-1/(n+1)(an+1)=2-1/(n+1)

an=2-1/n

2樓:匿名使用者

a(n+1)=an+1/[n(n+1)]=an+1/n-1/(n+1)

a(n+1)+1/(n+1)=an+1/na1+1/1=1+1=2

數列是各項均為2的常數數列。

an+1/n=2

an=2-1/n

3樓:

an+1 = an + 1/n - 1/(n+1)an = an-1 + 1/(n -1) - 1/nan+1 = an-1 + 1/(n-1) - 1/(n+1)=.....= a1 + 1/1 - 1/(n+1) = 2 - 1/(n+1)

an = 2 - 1/n

4樓:自由隨行

a_(n+1)+(1/(n+1))=a_n+1/n 所以a_n+1/n=⋯=a_1+1,∴a_n=2-1/n

5樓:手機使用者

題不對啊~~是an+1還是a(n+1),如果是an+1=an+1/n(n+1),兩邊減掉an,1=1/n(n+1)。。。不成立吧

已知數列an 滿足a1=1 an+1=an/1+an 求數列an的通項公式

6樓:116貝貝愛

數列an的通項公式為:2n-1

解題過程如下:

由an+1=2an+1得an+1+1=2(an+1)

又an+1≠0,

∴an+1+1

an+1

=2即為等比數列

∴an+1=(a1+1)qn-1

即an=(a1+1)qn-1-1

∴=2•2n-1-1

∴=2n-1

求數列極限的方法:

設一元實函式f(x)在點x0的某去心鄰域內有定義。如果函式f(x)有下列情形之一:

1、函式f(x)在點x0的左右極限都存在但不相等,即f(x0+)≠f(x0-)。

2、函式f(x)在點x0的左右極限中至少有一個不存在。

3、函式f(x)在點x0的左右極限都存在且相等,但不等於f(x0)或者f(x)在點x0無定義。

則函式f(x)在點x0為不連續,而點x0稱為函式f(x)的間斷點。

對於一個數列,如果任意相鄰兩項之差為一個常數,那麼該數列為等差數列,且稱這一定值差為公差,記為 d ;從第一項 a1到第n項 an的總和,記為sn 。

對於一個數列 ,如果任意相鄰兩項之商(即二者的比)為一個常數,那麼該數列為等比數列,且稱這一定值商為公比 q ;從第一項a1 到第n項an 的總和,記為tn 。

7樓:憶安顏

an=1/n

解:因為an+1=an/1+an

所以兩邊同時取倒數得1/an+1=1+an/an=1/an+1

等價於1/an+1-1/an=1

所以(1/a2-1/a1)+(1/a3-1/a2)+...+(1/an+1-1/an)=1/an+1-1/a1=n(應為括號裡都為1,一起加上的總和)

所以得到1/an+1-1/a1=n即1/an+1-1=n

所以1/an+1=n+1

所以an=1/n

擴充套件資料

如果數列的第n項an與n之間的關係可以用一個公式來表示,這個公式叫做數列的通項公式。有的數列的通項可以用兩個或兩個以上的式子來表示。沒有通項公式的數列也是存在的,如所有質陣列成的數列。

性質1、若已知一個數列的通項公式,那麼只要依次用1,2,3,...去代替公式中的n,就可以求出這個數列的各項。

2、不是任何一個無窮數列都有通項公式,如所有的質陣列成的數列就沒有通項公式。

3、給出數列的前n項,通項公式不唯一。

4、有的數列的通項可以用兩個或兩個以上的式子來表示。

8樓:drar_迪麗熱巴

(1)∵∵an+1=2an+1,

∴an+1+1=2(an+1),

∵a1=1,∴a1+1=2≠0,

∴數列是以2為首項,2為公比的等比數列,

∴an+1=2?2n-1=2n,

即an=2n-1,求數列的通項公式an=2n-1;

(2)若數列滿足4b1?14b2?1…4bn?1=(an+1) bn(n∈n*),

則4b1?14b2?1…4bn?

1=(2n) bn,即2[b1+b2+…+bn-n]=nbn,①2[b1+b2+…+bn+1-(n+1)]=(n+1)bn+1,②,②-①得2(bn+1-1)=(n+1)bn+1-nbn,即(n-1)bn+1-nbn+2=0,③

nbn+2-(n+1)bn+1+2=0,④③-④,得nbn+2-2nbn+1+nbn=0,即bn+2-2bn+1+bn=0,

則bn+2+bn=2bn+1,

∴是等差數列.

等差數列是指從第二項起,每一項與它的前一項的差等於同一個常數的一種數列,常用a、p表示。這個常數叫做等差數列的公差,公差常用字母d表示。

例如:1,3,5,7,9……2n-1。通項公式為:

an=a1+(n-1)*d。首項a1=1,公差d=2。前n項和公式為:

sn=a1*n+[n*(n-1)*d]/2或sn=[n*(a1+an)]/2。

9樓:浩然之氣

是an+1還是a(n+1)

已知數列(an)滿足a1 1 a2 3 an 2 3an

由題意可知,an 2 an 1 2 an 1 2an 且a2 a1 2,所以是公比為2,首項為2 的等比數列.求出an 1 an的通向為an 1 2 n an求和2 n,sn 2 n 2 所以,an a1 sn an 2 n 1 醉不倒的酒葫蘆 an 2 3an 1 2an 所以a n 2 a n ...

高一數列已知數列滿足a1 1,an 1減2an 2的n次方,求an

a n 1 2a n 2 n a n 2a n 1 2 n 1 2a n 4a n 1 2 n a n 1 2a n 2 2 n 2 4a n 8a n 1 2 n.a 3 2a 2 2 2 2 n 2 a 3 2 n 1 a 2 2 n a 2 2a 1 2 1 2 n 1 a 2 2 n a 1...

已知數列an滿足a1 a2 1,a n 2 a n

謎惑中 a n 2 a n 1 an 取 a n 2 ka n 1 b a n 1 kan 得 b k 1,bk 1,即 k k1,b b1或k k2,b b2 這個很好解,筆算一下吧,不好打 貌似也沒用到 故可得 a n 1 k1a n b1 n 1 a2 k1a1 a n 1 k2a n b2 ...