設S是上半球面z a 2 x 2 y 2的上側(a

時間 2021-09-13 01:12:28

1樓:浩笑工坊

首先積分曲面關於xoz,yoz平面都是對稱的,而被積函式(x+y)分別是關於x,y的奇函式,所以∫∫(x+y)=0,原積分=∫∫zds,而(z'x)^2+(z'y)^2+1=x^2/z^2+y^2/z^2+1=a^2/z^2,所以積分=∫∫azdxdy/z=a∫∫dxdy=πa^3

求曲面z=xy/a被柱面x+y=a所割下部分的面積a.z/x=y/a;z/y=x/a,積分域dxy:圓心在原點,半徑r=a的園.a=[dxy]∫∫√[1+(z/x)+(z/y)]dxdx=[dxy]∫∫√[1+(x+y)/a]dxdy=[dxy](1/a)∫∫√(a+x+y)dxdy為便於計算,換

既然是上半球面,那麼z>=0.教材上的式子由於有根號的限制,可以滿足條件.但是你寫的那個方程,是整個球面方程,包括了z<0的部分

擴充套件資料

對座標的曲線積分的計算方法:

(1)直接計算方法,引數方程表示式直接代入,轉換為定積分計算的方法。注意定積分下限為起點對應的引數,上限為終點對應的引數。

(2)兩類曲線積分之間的關係,注意方向餘弦構成的切向量的方向應與曲線方向一直。

(3)格林公式,當積分曲線為空間曲線時,則使用格林公式。(注意三個條件:封閉性,方向性與偏導的連續性)。

(4)積分與路徑無關(格林公式)。

2樓:春天的離開

把上半球面z=√(1-x^2-y^2)投影到xoy平面上,得圓x^2+y^2=1,利用極座標,

原積分=∫(sinθ)^3dθ∫r^4dr(r積分限0到1,θ積分限0到2π),∫r^4dr=1/5,∫(sinθ)^3dθ

=-∫(sinθ)^2dcosθ=∫[(cosθ)^2-1]dcosθ=(cosθ)^3/3-cosθ=0,

所以積分=0其實本題可利用對稱性,由於積分曲面關於x軸對稱,而被積函式是關於y奇函式,所以積分=0

被積曲面方程z=(a^2-x^2-y^2)^(1/2),則z'x=-2x/2(a^2-x^2-y^2)^(1/2)

=-x/z,同理z'y=-y/z,所以[1+(z'x)^2+(z'y)^2]^(1/2)=(1+x^2/z^2+y^2/z^2)^(1/2)=a/z,

所以積分=∫∫z[1+(z'x)^2+(z'y)^2]^(1/2)dz=a∫∫dxdy,而∫∫dxdy等於被積曲面在xoy平面上投影的面積,將兩方程聯立,得x^2+y^2=a^2/2

即投影圓半徑的平方=a^2/2,面積=πa^2/2,所以原積分=πa^3/2

擴充套件資料

計算∫根號(2y^2+z^2)ds,其中l為球面x^2+y^2+z^2=3與平面x=y相交的圓周

x^2+y^2+z^2=3與x=y相交的圓周為一個球大圓,

且方程滿足:2y^2+z^2=3,(只需將x=y代入球方程即可)

第一類曲線積分可以用曲線方程化簡被積函式

因此原式=∫√3ds

=√3∫1ds

被積函式為1,積分結果是曲線弧長,即球大圓的周長

=√3*2π*√3=6π

高數二重積分題,設∑為上半球面z=√(a^2-x^2-y^2)的上側,則∫∫∑xydydz+yz

3樓:匿名使用者

解題過程如copy下圖:

積分的線性性質du

性質1 (積分可加性) 函式zhi和(差)的二重積分等於dao各函式二重積分的和(差)。

性質2 (積分滿足數乘) 被積函式的常係數因子可以提到積分號外。

比較性性質3 如果在區域d上有f(x,y)≦g(x,y)估值性性質4 設m和m分別是函式f(x,y)在有界閉區域d上的最大值和最小值,σ為區域d的面積。

性質5 如果在有界閉區域d上f(x,y)=k(k為常數),σ為d的面積,則sσ=k∫∫dσ=kσ。

4樓:匿名使用者

補上底面後使用高斯公式:

5樓:樓蘭閔澤

高數曲面積 設∑球面x^2+y^2+z^2=a^2,則曲面積(x+y+z)^2ds=?

原式=∫∫

回(x2+y2+z2+2xy+2yz+2xz)ds=∫∫(x2+y2+z2)ds+∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds

=∫∫a 2ds +0+0+0

=a2 ?4πa2

=4πa^4

注:1、∫∫(x2+y2+z2)ds=∫∫a 2ds (利答用曲面積曲面程代入)

2、∫∫2xyds+ ∫∫2yz ds+∫∫ 2xzds=0+0+0 (利用曲面積稱性)

計算第一型曲面積分:∫∫(x+y+z)da , ∑為上半球面z=√(a^2-x^2-y^2) (a>0)

6樓:y妹子是我

解答bai過程如下:

擴充套件資料

第一du形zhi曲dao線積分和第二形專曲線積分割槽別

一、方法不同

第一型曲面積屬分最基本的計算方法就是同第二型曲面積分一樣, 也是化為二重積分。

第二型曲面最基本的方法就是通過找投影化為二重積分. 想要提醒一點的是: 如果曲面是 x=c 的一部分, 這時候x'=0, 即 dx=0, 所以曲面積分中包含 dxdy 與 dzdx 的兩項直接為零,。

而關於 p(x,y,z)dzdx 的積分, 也變為了 p(c,y,z)dydz 的積分, 然後結合方向就可以化為二重積分.。同理, 對於 y 或者 z 為常數的情況亦是如此。

二、積分物件不同

第一內類曲線積分是對弧長積分,對弧長的曲線積分的積分元素是弧長元素;第二類曲線積分是對座標(有向弧長在座標軸的投影)積分,對座標軸的曲線積分的積分元素是座標元素。

三。應用場合不同

第一類曲線積分求非密度均勻的線狀物體質量等問題,第二類曲線積分解決做功類等問題。

7樓:萌小萌

最後,上半球面的面積難道不是2πa^2?結果能是πa^3?那也是2πa^3吧 啊,最後積分割槽域改變了吧.....

8樓:匿名使用者

^首先積分曲面關於xoz,yoz平面都是對稱的,而被積函式

(x+y)分別是關於x,y的奇函式,所以∫∫(x+y)=0,原積分專=∫∫zds,而(z'x)^屬2+(z'y)^2+1=x^2/z^2+y^2/z^2+1=a^2/z^2,所以積分=∫∫azdxdy/z=a∫∫dxdy=πa^3

i=∫∫ xz^2dydz+(y*x^2-z^3)dzdx+(2xy+z*y^2)dxdy /x^2+y^2+z^2,積分曲面為上半球面z=√a^2-x^2-y^2外側

9樓:匿名使用者

就一個答案

因為分母x^2+y^2+z^2在曲面σ:x^2+y^2+z^2=a^2上

所以可以直接把含有x^2+y^2+z^2的都換為a^2

這是曲線和曲面積分的特性,就能省去挖孔的步驟

但是,若這裡的分母不是x^2+y^2+z^2的話,比如x^2+2y^2+3z^2

做法就不同了,不能直接代入,而是需要挖一個x^2+2y^2+3z^2=t^2,t->0

的小橢球,來避免奇點,這樣圍成的曲面就能用高斯公式了

再詳細一點的,

許多人都把重積分和線面積分都混淆了

實際上重積分是不能直接這樣代入的

因為重積分的方程是x^2+y^2+z^2≤a^2

但是面積分的方程是x^2+y^2+z^2=a^2

這個不等號和等號是關鍵所在了

重積分方程要用等號表示時,一定要說明由是哪些曲面圍成的封閉體積

例如由z=√(x^2+y^2)和z=√(1-x^2-y^2)圍成的體積,這裡可用等號表示

或者直接說體積範圍是z≥√(x^2+y^2)和z≤√(1-x^2-y^2)

但是,對於曲面積分,就不能用z≥√(x^2+y^2)和z≤√(1-x^2-y^2)來表示了

只能說由z=√(x^2+y^2)和z=√(1-x^2-y^2)圍成的曲面的全外側等等

也有一個要點

當是全外(內)側的曲面積分時,若被積函式有相應的積分方程式子

可以先直接代入,但是用了高斯公式變為三重積分後,就不能這麼做了,要注意哦

急!有一個關於高數空間的問題。求由上半球面z=√(a^2-x^2-y^2),柱面x^2+y^2-ax=0及平面z=0所圍成的立體.

10樓:匿名使用者

^^關鍵是這個的形狀:x^2+y^2-ax=0x^2-ax+y^2=0

x^2 - ax + (a/2)^2 + y^2=(a/2)^2(x -a/2)^2 + y^2=(a/2)^2這就是x^2+y^2-ax=0的形狀,圓心位專置不在原點的圓,圓心(a/2, 0) ,半

屬徑a/2 ,總之是柱面

它的半徑小於a。所以在圓心(0, 0) ,半徑a的圓內部,你畫一下,我不會畫圖,sorry

所圍成的立體:

底面為圓(上面我說的那個圓);

頂為球面的一部分,但偏了一些,像個什麼呢?我到想不起來了;

側面是柱面,中心軸和z軸平行,但頂的高度不一樣的,是立體橢圓。

11樓:匿名使用者

半球面z=√(a^2-x^2-y^2),在xoy面上的投影方程為x^2+y^2<=a^2,z=0,它包含x^2+y^2=ax,z=0。

12樓:中中中南南南南

^z=√(a^2-x^2-y^2)表示的是一個半球,z=0表示的是一個平面,而x^2+y^2=ax表示的是一個柱體。柱體在xoy平面的內投影的圓容心是(a/2,0),半徑為a/2,而半球在xoy平面的投影是圓心在原點,半徑為a的圓,所以明顯的平面z=0,半球z=√(a^2-x^2-y^2),柱體x^2+y^2=ax,所形成的立體圖形在xoy平面的投影為x^2+y^2=ax,z=0。畫個圖,很明顯的

13樓:生活好浪漫

^^x^du2+y^2-ax=0

x^zhi2-ax+y^2=0

x^2 - ax + (a/2)^2 + y^2=(a/2)^2(x -a/2)^2 + y^2=(a/2)^2這就是x^2+y^2-ax=0的形狀,圓心位置不在原點的圓,dao圓心(a/2, 0) ,半徑a/2 ,總之回是柱面答

它的半徑小於a。所以在圓心(0, 0) ,半徑a的圓內部,你畫一下,我不會畫圖,sorry

所圍成的立體:

底面為圓(上面我說的那個圓);

頂為球面的一部分,但偏了一些,像個什麼呢?我到想不起來了;

側面是柱面,中心軸和z軸平行,但頂的高度不一樣的,是立體橢圓

用matlab畫出上半球面 x 2 y 2 z 2 1與平面x y z 1 5的交線

風清響 x,y,z sphere 50 利用sphere建立矩陣 z z 0 0 把z 0的部分置為0 mesh x,y,z 畫上半球面 hold on ezmesh 1.5 x y 1 1 畫平面x y z 1.5 x,y,z meshgrid linspace 1,1 contourslice ...

設是球面x 2 y 2 z 2 4,則曲面積分x 2 y 2 z 2 dS

武大 高數曲面積分 設 是球面x 2 y 2 z 2 a 2,則曲面積分 x y z 2ds 原式 x y z 2xy 2yz 2xz ds x y z ds 2xyds 2yz ds 2xzds a ds 0 0 0 a 4 a 4 a 4 注 1 x y z ds a ds 利用曲面積分可將曲面...

這題怎麼做?設是球面x2 y2 z2 a2的外側,Dxy x2 y2 a2,則必有

解 積分域 x y 2ax,即有bai x a y a 這是一個園du心在 a,0 半徑r a的園域。z 4a x y z x x z,z y y z a dxy 1 x z y z dxdy dxy 1 x y 4a x y dxdy dxy 4a 4a x y dxdy dxy 2a 1 4a ...