1樓:墨汁諾
y=1/x 當y=3時,x=1/3s=∫(1/3—2)1/xdx
=lnx|(1/3—2)
=ln2-ln(1/3)
=ln6
因為可能存在某些曲線,在某點切線的方向不是確定的,這就使得我們無法從切線開始入手,這就需要我們來研究導數處處不為零的這一類曲線。
曲線:它的橫座標是原來的亮度,縱座標是調整後的亮度。在未作調整時,曲線是直線形的,而且是45°的,曲線上任何一點的橫座標和縱座標都相等,這意味著調整前的亮度和調整後的亮度一樣,當然
如果把曲線上的一點往上拉,它的縱座標就大於橫座標了,這就是說,調整後的亮度大於調整前的亮度,也就是說,亮度增加了。
2樓:西域牛仔王
s=∫(1/2→3) (2 - 1/x) dx=2x - ln(x) | (1/2→3)=5 - ln(6),
v=π∫(1/2→3) [2² - (1/x)²] dx=π(4x+1/x) | (1/2→3)
=25π/3。
3樓:匿名使用者
解題過程如下圖:
曲線積分分為:
(1)對弧長的曲線積分 (第一類曲線積分)(2)對座標軸的曲線積分(第二類曲線積分)兩種曲線積分的區別主要在於積分元素的差別;對弧長的曲線積分的積分元素是弧長元素ds;例如:對l的曲線積分∫f(x,y)*ds 。對座標軸的曲線積分的積分元素是座標元素dx或dy,例如:
對l』的曲線積分∫p(x,y)dx+q(x,y)dy。但是對弧長的曲線積分由於有物理意義。
設曲線xy=1,x=2,y=3所圍成的平面區域為d,求(1)d的面積。(2)d繞x軸旋轉一週所得旋轉體的面積。
4樓:じ莜麥
y=1/x 當y=3時,x=1/3
s=∫(1/3—2)1/xdx
=lnx|(1/3—2)
=ln2-ln(1/3)
=ln6
5樓:
用積分啦~這些題很難說出來怎麼做。
6樓:過雪黨香
高數踢,不難,面積39/4;第二問是不是求旋轉體的表面積?
由曲線xy=1與直線y=2,x=3圍成一平面圖形求
7樓:**簡
答案應該是5-ln3/2,結尾拆括號有問題
設拋物線y^2=4x與直線y=x+1所圍成的平面區域d,求d的面積和d繞x軸旋轉一週形成的旋轉體的體積
8樓:唐衛公
題目有問題,應當是二者和軸所圍的區域。
s = ∫₀¹(x + 1 - 2√x)dx= (x²/2 + x - 2*(2/3)x√x)|₀¹= 1/2 + 1 - 4/3
= 1/6
v = ∫₀¹π[(x + 1)² - (2√x)²]dx= π∫₀¹(x² - 2x + 1)dx= π(x³/3 - x² + x)₀¹
= π(1/3 - 1 + 1)
= π/3
9樓:走舌
拋物線y^2=4x與直線y=x+1的交點是(1,2),只有一個交點,無法圍成一個平面啊,題目出錯了。
設曲線y=x^2,y=x^3 所圍成的平面圖形d 求d的面積 求d繞x軸旋轉的旋轉體 5
10樓:匿名使用者
交點:a(0,0);b(1,1)
d的面積微元:ds=(x^2-x^3)dxd的面積=∫ds=∫[0∽1](x^2-x^3)dx=【(1/3)x^3-(1/4)x^4】|x=1
=1/3-1/4=1/12
旋轉體體積=∫dv=∫π[(x^2)^2-(x^3)^2]dx=π【(1/5)x^5-(1/7)x^7】|x=1
=π(1/5-1/7)=2π/35 《忽略x=0的計算》
求曲線xy=1及直線y=x,y=3所圍成的平面圖形的面積
11樓:清徐
解:由xy=1,
y=3可得交點座標為(,3),
由xy=1,y=x可得交點座標為(1,1),由y=x,y=3可得交點座標為(3,3),∴由曲線xy=1,直線y=x,y=3所圍成的平面圖形的面積為=(3x-lnx)+(3x-x2)=(3-1-ln3)+(9--3+)=4-ln3.
12樓:love依戀
這沒有標準的面積演算法,用微積分吧 y=x與曲線的交點設為a,y=3與曲線的交 點設為b,由a向y=3做垂線(垂線與x軸有焦 點),所以圖形由弓形與三角形組成 三角形的面積為2,由b向x軸做垂線,弓形 s=矩形面積-伽瑪y*dx(dx為曲線上極小 一段在x軸上射影)=2÷3×3-ln3 總面積為4-ln3
設A,B,為直線x y 1與圓x y 1的兩個交點,則弦的長為A 1 B 2 C D
d 圓心 0,0 到直線的距離為 0 0 1 根號 1 2 1 2 根號2 2 因為圓的半徑為1 所以弦ab的長為 2根號 1 2 根號2 2 2 2根號2 2 根號2 a x1,y1 b x2,y2 x y 1 1 x 2 y 2 1 2 sub 1 into 2 x 2 1 x 2 1 x 2 ...
設實數x,y滿足x 2 4y 2 xy 1,求x 2y最大值
x 2 4y 2 xy 1 x 2 xy y 2 4 15y 2 4 1 x y 2 2 15y 2 4 1 令x y 2 sina 15y 2 cosa 則y 2cosa 15 x sina cosa 15x 2y sina cosa 15 4cosa 15 sina 3cosa 15 2 10 ...
設A 2x 3xy y x 2y,B 4x 6xy 2y 3x y。若x 2a的絕對值 (y 3)0,且B 2A
慈悲的小彌勒 解 x 2a y 3 0 因為 x 2a 0,y 3 0 所以 x 2a 0,y 3 0 所以x 2a,y 3 b 2a 4x 6xy 2y 3x y 2 2x 3xy y x 2y 4x 6xy 2y 3x y 4x 6xy 2y 2x 4y x 5y 2a 15 x 2a的絕對值 ...