四邊形的判定,總結四邊形的定義 判定和性質

時間 2021-10-15 00:24:22

1樓:

兩組對邊分別平行的四邊形是平行四邊形

一組對邊平行且相等的四邊形是平行四邊形

兩組對邊分別相等的四邊形是平行四邊形

兩條對角線互相平分的四邊形是平行四邊形

兩組對角分別相等的四邊形是平行四邊形

中心對稱的四邊形是平行四邊形

等邊直角三角形的判定方法

一個角是直角,另外兩個角相等

一個角是直角,兩條直角邊相等。

相似三角形的判定定理:

(1)如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那麼這兩個三角形相似,(簡敘為兩角對應相等兩三角形相似).

(2)如果一個三角形的兩條邊和另一個三角形的兩條邊對應成比例,並且夾角相等,那麼這兩個三角形相似(簡敘為:兩邊對應成比例且夾角相等,兩個三角形相似.)

(3)如果一個三角形的三條邊與另一個三角形的三條邊對應成比例,那麼這兩個三角形相似(簡敘為:三邊對應成比例,兩個三角形相似.)

直角三角形相似的判定定理:

(1)直角三角形被斜邊上的高分成兩個直角三角形和原三角形相似.

(2)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似.

等腰三角形的判定方法

1、證兩個角相等

2、證兩條邊相等

全等三角形的判定方法

1、三組對應邊分別相等的兩個三角形全等(簡稱sss)。

2、有兩邊及其夾角對應相等的兩個三角形全等(sas)。

3、有兩角及其夾邊對應相等的兩個三角形全等(asa)

注:s是邊的英文縮寫,a是角的英文縮寫

4、有兩角及一角的對邊對應相等的兩個三角形全等(aas)

5、直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等(hl)

矩形判定:

1.有一個角是直角的平行四邊形是矩形

2.對角線相等的平行四邊形是矩形

3.有三個角是直角的四邊形是矩形

4.四個內角都相等的四邊形為矩形

5.關於任何一組對邊中點的連線成軸對稱圖形的平行四邊形是矩形

6.對於平行四邊形,若存在一點到兩雙對頂點的距離的平方和相等,則此平行四邊形為矩形

菱形判定

一組鄰邊相等的平行四邊形是菱形

對角線互相垂直平分的四邊形是菱形

四邊相等的四邊形是菱形

關於兩條對角線都成軸對稱的四邊形是菱形

正方形的判定

①四條邊都相等的平行四邊形是正方形

②有一組臨邊相等的矩形是正方形

③有一個角是直角的菱形是正方形

等腰梯形的判定

1、兩腰相等的梯形是等腰梯形;

2、在同一底上的兩個角相等的梯形是等腰梯形;

3、對角線相等的梯形是等腰梯形.

梯形判斷定理.

一組對邊平行,另一組對邊不平行的四邊形是梯形

2樓:弈墨鴻儒

52平行四邊形性質定理1 平行四邊形的對角相等

53平行四邊形性質定理2 平行四邊形的對邊相等

54推論 夾在兩條平行線間的平行線段相等

55平行四邊形性質定理3 平行四邊形的對角線互相平分

56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形

58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

59平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形

60矩形性質定理1 矩形的四個角都是直角

61矩形性質定理2 矩形的對角線相等

62矩形判定定理1 有三個角是直角的四邊形是矩形

63矩形判定定理2 對角線相等的平行四邊形是矩形

64菱形性質定理1 菱形的四條邊都相等

65菱形性質定理2 菱形的對角線互相垂直,並且每一條對角線平分一組對角

66菱形面積=對角線乘積的一半,即s=(a×b)÷2

67菱形判定定理1 四邊都相等的四邊形是菱形

68菱形判定定理2 對角線互相垂直的平行四邊形是菱形

69正方形性質定理1 正方形的四個角都是直角,四條邊都相等

70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

71定理1 關於中心對稱的兩個圖形是全等的

72定理2 關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

73逆定理 如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那麼這兩個圖形關於這一點對稱

74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等

75等腰梯形的兩條對角線相等

76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

77對角線相等的梯形是等腰梯形

78平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那麼在其他直線上截得的線段也相等

79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰

序號不用管

3樓:冷漠的人才

我來吧!我說的是人教版的,不過應該可以通用。

證明平行四邊形的:

兩組對邊對邊相等,兩組對邊對邊平行,一組對邊平行且相等,對角相等,對角線向平分,就這五種可以直接判定!

證明等腰梯形的:

一組對邊平行且另一組對邊相等且不平行,對角互補,同一底上兩角相等,一組對邊平行且對角線相等,就這四種可以直接判定。

證明矩形的:

平行四邊形+對角線相等,平行四邊形+一個角90°,平行四邊形+鄰邊垂直,三個角90°,對角線相等且相平分。

證明菱形的:

四條邊都相等

對角線互相垂直平分

對角線互相垂直的平行四邊形

證明正方形的:

矩形+鄰邊相等或者對角線相垂直

菱形+一個角90°或者對角線相等

正方形直接證還不如先說是平行四邊形或者菱形、矩形,再補充條件說是正方形。

別信2樓的,亂貼的,有些事性質有些是判定。

萬水千山總是情,追加點兒分行不行?

4樓:雙面木子

平行四邊形判定:

1、兩組對邊分別平行;

2、兩組對邊分別相等;

3、一組對邊平行且相等;

4、兩組對角分別相等;

5、對角線互相平分;

是這樣的嗎?如果是,我再補充別的。

總結四邊形的定義、判定和性質

5樓:俎素琴商靜

由四條線段圍成的平面圖形叫四邊形。由規則四邊形和不規則四邊形組成.

規則四邊形:

平行四邊形(包括:,普通平行四邊形,矩形,菱形,正方形)

梯形(包括:普通梯形,直角梯形,等腰梯形)

四邊形的內角和和外角和均為360度

依次連線四邊形各邊中點所得的四邊形稱為中點四邊形。不管原四邊形的形狀怎樣改變,中點四邊形的形狀始終是平行四邊形。菱形的中點四邊形是矩形,矩形的中點四邊形是菱形,正方形的中點四邊形是正方形,平行四邊形的中點四邊形是平行四邊形。

平行四邊形的性質和判定

定義:兩組對邊分別平行的四邊形叫做平行四邊形.

性質:①平行四邊形兩組對邊分別平行;

②平行四邊形的兩組對邊分別相等;

③平行四邊形的兩組對角分別相等;

④平行四邊形的對角線互相平分

.判定:①兩組對邊分別平行的四邊形是平行四邊形;

②兩組對邊分別相等的四邊形是平行四邊形;

③兩組對角分別相等的四邊形是平行四邊形;

④對角線互相平分的四邊形是平行四邊形;

⑤一組對邊平行且相等的四邊形是平行四邊形

.注意:一組對邊平行,一組對角相等的四邊形是平行四邊形;一組對邊平行,另一組對邊相等的四邊形不一定是平行四邊形,如:等腰梯形

.矩形的性質和判定

定義:有一個角是直角的平行四邊形叫做矩形.

性質:①矩形的四個角都是直角;

②矩形的對角線相等

.注意:矩形具有平行四邊形的一切性質

.判定:①有一個角是直角的平行四邊形是矩形;

②有三個角是直角的四邊形是矩形;

③對角線相等的平行四邊形是矩形

.菱形的性質和判定

定義:有一組鄰邊相等的平行四邊形叫做菱形.

性質:①菱形的四條邊都相等;

②菱形的對角線互相垂直,並且每一條對角線平分一組對角

.注意:菱形也具有平行四邊形的一切性質

.判定:①有一組鄰邊相等的平行四邊形是菱形;

②四條邊都相等的四邊形是菱形;

③對角線互相垂直的平行四邊形是菱形

正方形的性質

定義:有一組鄰邊相等並且有一角是直角的平行四邊形叫做正方形.

性質:①正方形的四個角都是直角,四條邊都相等;

②正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

.注意:正方形具有平行四邊形、矩形、菱形的一切性質.

梯形及特殊梯形的定義

梯形:一組對邊平行而另一組對邊不平行的四邊形叫做梯形.(一組對邊平行且不相等的四邊形叫做梯形.)

等腰梯形:兩腰相等的梯形叫做等腰梯形.

直角梯形:一腰垂直於底的梯形叫做直角梯形.

等腰梯形的性質

1、等腰梯形兩腰相等、兩底平行;

2、等腰梯形在同一底上的兩個角相等;

3、等腰梯形的對角線相等;

4、等腰梯形是軸對稱圖形,它只有一條對稱軸,一底的垂直平分線是它的對稱軸.

等腰梯形的判定

1、兩腰相等的梯形是等腰梯形;

2、在同一底上的兩個角相等的梯形是等腰梯形;

3、對角線相等的梯形是等腰梯形.

6樓:彌文玉鳳鸞

平行四邊形的性質和判定

1.定義:

兩組對邊分別平行的四邊形叫做平行四邊形。

2.性質:

⑴如果一個四邊形是平行四邊形,那麼這個四邊形的兩組對邊分別相等。

(簡述為“平行四邊形的對邊相等”)

⑵如果一個四邊形是平行四邊形,那麼這個四邊形的兩組對角分別相等。

(簡述為“平行四邊形的對角相等”)

⑶夾在兩條平行線間的平行線段相等。

⑷如果一個四邊形是平行四邊形,那麼這個四邊形的兩條對角線互相平分。

(簡述為“平行四邊形的兩條對角線互相平分”)

⑸平行四邊形是中心對稱圖形,對稱中心是兩條對角線的交點。

3.判定:

(1)如果一個四邊形的兩組對邊分別相等,那麼這個四邊形是平行四邊形。

(簡述為“兩組對邊分別相等的四邊形是平行四邊形”)

(2)如果一個四邊形的一組對邊平行且相等,那麼這個四邊形是平行四邊形。

(簡述為“一組對邊平行且相等的四邊形是平行四邊形”)

(3)如果一個四邊形的兩條對角線互相平分,那麼這個四邊形是平行四邊形。

(簡述為“對角線互相平分的四邊形是平行四邊形”)

(4)如果一個四邊形的兩組對角分別相等,那麼這個四邊形是平行四邊形。

(簡述為“兩組對角分別相等的四邊形是平行四邊形”

(5)如果一個四邊形的兩組對邊分別平行,那麼這個四邊形是平行四邊形。

(簡述為“兩組對邊分別平行的四邊形是平行四邊形”)

矩形的性質和判定

定義:有一個角是直角的平行四邊形叫做矩形.

性質:①矩形的四個角都是直角;

②矩形的對角線相等

.注意:矩形具有平行四邊形的一切性質

.判定:①有一個角是直角的平行四邊形是矩形;

②有三個角是直角的四邊形是矩形;

③對角線相等的平行四邊形是矩形

.菱形的性質和判定

定義:有一組鄰邊相等的平行四邊形叫做菱形.

性質:①菱形的四條邊都相等;

②菱形的對角線互相垂直,並且每一條對角線平分一組對角

.注意:菱形也具有平行四邊形的一切性質

.判定:①有一組鄰邊相等的平行四邊形是菱形;

②四條邊都相等的四邊形是菱形;

③對角線互相垂直的平行四邊形是菱形

(4).有一條對角線平分一組對角的平行四邊形是菱形

正方形的性質和判定

定義:有一組鄰邊相等並且有一角是直角的平行四邊形叫做正方形.

性質:①正方形的四個角都是直角,四條邊都相等;

②正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

.判定:因為正方形具有平行四邊形、矩形、菱形的一切性質,所以我們判定正方形有三個途徑

①四條邊都相等的平行四邊形是正方形

②有一組臨邊相等的矩形是正方形

③有一個角是直角的菱形是正方形

梯形及特殊梯形的定義

梯形:一組對邊平行而另一組對邊不平行的四邊形叫做梯形.(一組對邊平行且不相等的四邊形叫做梯形.)

等腰梯形:兩腰相等的梯形叫做等腰梯形.

直角梯形:一腰垂直於底的梯形叫做直角梯形.

等腰梯形的性質

1、等腰梯形兩腰相等、兩底平行;

2、等腰梯形在同一底上的兩個角相等;

3、等腰梯形的對角線相等;

4、等腰梯形是軸對稱圖形,它只有一條對稱軸,一底的垂直平分線是它的對稱軸.

等腰梯形的判定

1、兩腰相等的梯形是等腰梯形;

2、在同一底上的兩個角相等的梯形是等腰梯形;

3、對角線相等的梯形是等腰梯形.

什麼的四邊形叫做平行四邊形,什麼叫做四邊形?

小小芝麻大大夢 平行四邊形,長方形,正方形,梯形,菱形等等。1 平行四邊形,是在同一個二維平面內,由兩組平行線段組成的閉合圖形。平行四邊形一般用圖形名稱加四個頂點依次命名。注 在用字母表示四邊形時,一定要按順時針或逆時針方向註明各頂點。2 長方形,數學術語,是有一個角是直角的平行四邊形叫做長方形。也...

四邊形EFGH是什麼樣的四邊形

連線四邊形的對角線,用三角形的中位線定理,可知道ef gh分別平行於一條對角線且為對角線的一半,所以ef gh並互相平行,一組對邊平行且相等的四邊形是平行四邊形,所以efgh是平行四邊形。同理也可得知he平行於gf且相等,兩組對邊平行的四邊形是平行四邊形,所以efgh平行四邊形。平行四邊形,利用三角...

數學。四邊形,必謝謝,數學四邊形?

證明 1 四邊形abcd是平行四邊形,ab dc,ab dc,abf ecf,ec dc,ab ec,在 abf和 ecf中,abf ecf,afb efc,ab ec,abf ecf 2 ab ec,ab ec,四邊形abec是平行四邊形,fa fe,fb fc,四邊形abcd是平行四邊形,abc...