函式奇偶性

時間 2021-12-23 14:05:44

1樓:黑白

解:判斷奇偶性,首先要確定定義域。

如果定義域關於原點對稱,才能利用:

若f(-x)=f(x),則函式為偶函式。影象關於y軸對稱。

若f(-x)=-f(x),則函式為奇函式。影象關於原點對稱。

如果定義域不關於原點對稱,則函式為非奇非偶函式。

f(x)=√x-2 + √2-x

首先判斷定義域,x-2≥0且2-x≥0

得:x=2,f(x)=0

∴f(x)=√x-2 + √2-x表示一個點(2,0),是非奇非偶函式

2樓:匿名使用者

定義域:x-2≥0,2-x≥0

即x≥2,x≤2

∴x=2

即定義域為

∴f(x)=0

∴函式影象就是點(2,0)

∴f(x)既不是奇函式,又不是偶函式。

3樓:平仄仄平仄仄平

偶函式容易看出函式定義域為2,值域為0.函式影象為在y軸上的點。

4樓:

既不是奇函式,又不是偶函式

判斷奇偶性按下面步驟來就肯定不會出錯。

1、找出函式定義域,判斷定義域對稱性。只有定義域關於原點對稱才談得上奇偶函式,否則兩種都不是。

2、滿足第一條的情況下,再去看f(-x)化簡後是f(x)還是-f(x)。如果是前者就是偶函式,後者就是奇函式。否則兩個都不是。

看題目中,第一步,判斷定義域x=2,不關於原點對稱,既不是奇函式,又不是偶函式。第二步不用做了

怎麼判斷函式的奇偶性

5樓:518姚峰峰

先看定義域是否關於原點對稱

如果不是關於原點對稱,則函式沒有奇偶性

若定義域關於原點對稱

則f(-x)=f(x),f(x)是偶函式

f(-x)=-f(x),f(x)是奇函式

具體方法:

1,定義法.①定義域是否關於原點對稱,對稱是奇偶函式的前提條件②f(-x)是否等於±f(x).

2,圖象法.①圖象關於原點中心對稱是奇函式②圖象關於y軸對稱是偶函式.

3,性質法.①兩個奇函式的和仍是奇函式②兩個偶函式的和仍是偶函式③兩個奇函式的積是偶函式④兩個偶函式的積是偶函式⑤一個奇函式和一個偶函式的積是奇函式.

希望幫到你 望採納 謝謝 加油

6樓:老黃的分享空間

奇函式。求f(-x),因為根號內的x是平方,所以符號不變,根號外的x會變成-x,然後利用平方差公式,分母1和分子同時乘以兩個式子的差,也就是-x和根號的差,可以得到求對數的冪的倒數,利用倒數為原數的-1次冪,再利用對數的求對數的冪的指數可以寫在對數前求積,就可以得到-f(x).

f(-x)=-f(x),證明是奇函式.

7樓:匿名使用者

判斷f(x)和f(-x)的關係

想等是偶函式,相反是奇函式,否則就是非奇非偶。

8樓:廖山穆嘉年

一般地,對於函式f(x)

⑴如果對於函式f(x)定義域內的任意一個x,都有f(x)=f(-x)或f(x)/f(-x)=1那麼函式f(x)就叫做偶函式。關於y軸對稱,f(-x)=f(x)。

⑵如果對於函式f(x)定義域內的任意一個x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那麼函式f(x)就叫做奇函式。關於原點對稱,-f(x)=f(-x)。

⑶如果對於函式定義域內的任意一個x,都有f(x)=f(-x)和f(-x)=-f(x),(x∈r,且r關於原點對稱.)那麼函式f(x)既是奇函式又是偶函式,稱為既奇又偶函式。

⑷如果對於函式定義域內的存在一個a,使得f(a)≠f(-a),存在一個b,使得f(-b)≠-f(b),那麼函式f(x)既不是奇函式又不是偶函式,稱為非奇非偶函式。

定義域互為相反數,定義域必須關於原點對稱

特殊的,f(x)=0既是奇函式,又是偶函式。

說明:①奇、偶性是函式的整體性質,對整個定義域而言。

②奇、偶函式的定義域一定關於原點對稱,如果一個函式的定義域不關於原點對稱,則這個函式一定不具有奇偶性。

(分析:判斷函式的奇偶性,首先是檢驗其定義域是否關於原點對稱,然後再嚴格按照奇、偶性的定義經過化簡、整理、再與f(x)比較得出結論)

③判斷或證明函式是否具有奇偶性的根據是定義。

④如果一個奇函式f(x)在x=0處有意義,則這個函式在x=0處的函式值一定為0。並且關於原點對稱。

⑤如果函式定義域不關於原點對稱或不符合奇函式、偶函式的條件則叫做非奇非偶函式。例如f(x)=x³【-∞,-2】或【0,+∞】(定義域不關於原點對稱)

⑥如果函式既符合奇函式又符合偶函式,則叫做既奇又偶函式。例如f(x)=0

注:任意常函式(定義域關於原點對稱)均為偶函式,只有f(x)=0是既奇又偶函式

9樓:蒼龍龍龍

函式是指一段在一起的、可以做某一件事兒的程式。也叫做子程式、(oop中)方法。

一個較大的程式一般應分為若干個程式塊,每一個模組用來實現一個特定的功能。所有的高階語言中都有子程式這個概念,用子程式實現模組的功能。在c語言中,子程式的作用是由一個主函式和若干個函式構成。

由主函式呼叫其他函式,其他函式也可以互相呼叫。同一個函式可以被一個或多個函式呼叫任意多次。

在程式設計中,常將一些常用的功能模組編寫成函式,放在函式庫中供公共選用。要善於利用函式,以減少重複編寫程式段的工作量。

函式分為全域性函式、全域性靜態函式;在類中還可以定義建構函式、解構函式、拷貝建構函式、成員函式、友元函式、運算子過載函式、行內函數等。

如何判斷函式奇偶性

10樓:demon陌

1 先分解函式為常見的一般函式,比如多項式x^n,三角函式,判斷奇偶性

2 根據分解的函式之間的運演算法則判斷,一般只有三種種f(x)g(x)、f(x)+g(x),f(g(x))(除法或減法可以變成相應的乘法和加法)

3 若f(x)、g(x)其中一個為奇函式,另一個為偶函式,則f(x)g(x)奇、f(x)+g(x)非奇非偶函式,f(g(x))奇

4 若f(x)、g(x)都是偶函式,則f(x)g(x)偶、f(x)+g(x)偶,f(g(x))偶

5 若f(x)、g(x)都是奇函式,則f(x)g(x)偶、f(x)+g(x)奇,f(g(x))奇

擴充套件資料:

偶函式:若對於定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)稱為偶函式。

奇函式:若對於定義域內的任意一個x,都有f(-x)=-f(x),那麼f(x)稱為奇函式。

定理奇函式的影象關於原點成中心對稱圖表,偶函式的圖象關於y軸成軸對稱圖形。

f(x)為奇函式《==》f(x)的影象關於原點對稱

點(x,y)→(-x,-y)

奇函式在某一區間上單調遞增,則在它的對稱區間上也是單調遞增。

偶函式在某一區間上單調遞增,則在它的對稱區間上單調遞減。

(1)奇函式在對稱的單調區間內有相同的單調性

偶函式在對稱的單調區間內有相反的單調性

(2)若f(x+a)為奇函式,則f(x)的影象關於點(a,0)對稱

若f(x+a)為偶函式,則f(x)的影象關於直線x=a對稱

(3)在f(x),g(x)的公共定義域上:奇函式±奇函式=奇函式

偶函式±偶函式=偶函式

奇函式×奇函式=偶函式

偶函式×偶函式=偶函式

奇函式×偶函式=奇函式

上述奇偶函式乘法規律可總結為:同偶異奇

11樓:我不是他舅

先看定義域是否關於原點對稱

如果不是關於原點對稱,則函式沒有奇偶性

若定義域關於原點對稱

則f(-x)=f(x),f(x)是偶函式

f(-x)=-f(x),f(x)是奇函式

12樓:濯友瑤肇螺

黃成琪(廣西天等縣高中)判斷函式奇偶性,是近年來高考和高中數學競賽命題的一個重要內容.怎樣才能快捷、準確地判斷函式的奇偶性呢?下面給出幾種常用的判斷方法,僅供參考。

一、定義域法一個函式是奇(或偶)函式,其定義戰必關於原點對稱,它是函式為奇偶性的必要條件.若函式的定義城不具有上述特徵,則函式為非奇偶函式.{3iji試判斷函式u。。in。』的奇偶性.解顯然,函式的定義域。

>0,由於它不關於原點對稱,故知u-e。。。』為菲奇非偶函式.注意者如下解,則是錯5吳的:由。

l=e』」」m。=。』/(一x)。

(一。)』一一。『。

一/(。)j(。)=。

』。。『為奇函式。事實上,由y。

el。。』==!if=。

3的變換中,並不是恆等變換,函式的定義城由。>0==。er已發生變化,如此解必然致誤.=、利用八。

)十八一。)。0和八。

)一八一。)=0.在函式八。)的定義城關於原點成軸對稱的前提下,若f(。

)十八一。)=0,則f(。)為專函式;若j(。

)一j(一.y)。

13樓:逄富前曼雁

第一步:先判定義域,看看是否關於原點對稱;第二步:計算f(-x),注意化簡,這題還需要你事先把那個1/2先和前面的式子通分的,你需要通分之後將的f(-x)分母化成和f(x)一樣,即可以判斷奇偶性了。

14樓:曾德文溥夏

恩,函式的定義域很重要,是靈魂,要先判斷,函式的定義域是否關於原點對稱,若不,則是非奇非偶函式,若是,則判斷f[x]是否等於f[-x],等於則為偶函式,不等,則為奇函式

還有一種方法,就是影象法,若關於原點對稱,就是奇函式,若關於y軸對稱,則為奇函式,當然前提還是要判斷定義域

15樓:簡樹花晁己

用定義很簡單就能判斷了,計算f(-x),若結果為f(x)則為偶函式,若為-f(x)則為奇函式。

如判斷函式f(x)=x+1/x的奇偶性:

f(-x)=-x-1/x=-(x+1/x)=-f(x)注意:必須說明f(x)的定義域是否關於x軸對稱或關於原點對稱又因為x屬於r

所以,f(x)為奇函式

16樓:竭儉許雨

y=2x和y=2x+3都是奇函式,如果要畫圖,就先畫出y=2x的圖(過(0,

0)(1,

2)兩個點,然後連線,兩點確定一條直線

),再向上平移3個單位就可得到y=2x+3的影象判斷函式奇偶性,應用它本身的性質去判斷--1.先看定義域,看所求函式關不關於原點對稱,如果不關於原點對稱,那麼就是非奇非偶函式.2.

看符不符合f(x)=f(-x)符合為偶函式,如果符合f(-x)=-f(x)就是奇函式.(有時很難判斷的函式可以代個數,例如1進去檢驗)

17樓:潘小之牛兆

特別要說明的是函式的奇偶性只是單獨對一個函式而言,而此題中的函式

y=log3^x

y=3^x

是兩個函式在其定義域內,只能說明是關於直線y=x對稱,不能說成是奇偶性的。這兩個函式都既不是奇函式也不是偶函式。

一般地,對於函式f(x)

(1)如果對於函式定義域內的任意一個x,都有f(-x)=-f(x),那麼函式f(x)就叫做奇函式。

(2)如果對於函式定義域內的任意一個x,都有f(-x)=f(x),那麼函式f(x)就叫做偶函式。

(3)如果對於函式定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那麼函式f(x)既是奇函式又是偶函式,稱為既奇又偶函式。

(4)如果對於函式定義域內的任意一個x,f(-x)=-f(x)或f(-x)=f(x)都不能成立,那麼函式f(x)既不是奇函式又不是偶函式,稱為非奇非偶函式。

說明:①奇、偶性是函式的整體性質,對整個定義域而言

②奇、偶函式的定義域一定關於原點對稱,如果一個函式的定義域不關於原點對稱,則這個函式一定不是奇(或偶)函式。

(分析:判斷函式的奇偶性,首先是檢驗其定義域是否關於原點對稱,然後再嚴格按照奇、偶性的定義經過化簡、整理、再與f(x)比較得出結論)

判斷正弦函式的奇偶性,如何判斷函式奇偶性

1.解 取f x 和f x 則有 f x lg sinx 根號下1 sinx 2 f x lg sinx 根號下1 sinx 2 lg sinx 根號下1 sinx 2 f x f x f x 為偶函式2.解 取f x 和f x 則有 f x sinx sin 2x sin 2x sin 3x si...

函式奇偶性問題,數學函式奇偶性的問題?

奇 奇 偶 奇 或 奇 奇偶 或 偶 偶 偶 偶 偶 奇 偶 奇 又奇又偶 影象看是點都在x軸上 f x 0 非奇非偶 前提是定義域不對稱 而且不滿足 f x f x 和f x f x 根號乘方都一樣 只要定義域對稱 公式滿足就可 不一定,判斷奇偶性 首先判斷定義域是否關於原點對稱,若不,則非奇非偶...

函式奇偶性y ln怎麼判斷這個奇偶性

小貝貝老師 解題過程如下 f x ln x 1 x ln x 1 x ln分子平方差 ln ln 1 x 1 x ln x 1 x f x 因為x 1 x 0恆成立 所以定義域r,關於原點對稱 所以是奇函式 判定函式奇偶性的方法 奇函式在其對稱區間 a,b 和 b,a 上具有相同的單調性,即已知是奇...