1樓:枝夕寒亥
不是有定理可循嗎?!
相似三角形的判定定理:
(1)如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那麼這兩個三角形相似,(簡敘為兩角對應相等兩三角形相似).
(2)如果一個三角形的兩條邊和另一個三角形的兩條邊對應成比例,並且夾角相等,那麼這兩個三角形相似(簡敘為:兩邊對應成比例且夾角相等,兩個三角形相似.)
(3)如果一個三角形的三條邊與另一個三角形的三條邊對應成比例,那麼這兩個三角形相似(簡敘為:三邊對應成比例,兩個三角形相似.)
直角三角形相似的判定定理:
(1)直角三角形被斜邊上的高分成兩個直角三角形和原三角形相似.
(2)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似.
相似三角形的性質定理:
(1)相似三角形的對應角相等.
(2)相似三角形的對應邊成比例.
(3)相似三角形的對應高線的比,對應中線的比和對應角平分線的比都等於相似比.
(4)相似三角形的周長比等於相似比.
(5)相似三角形的面積比等於相似比的平方.
相似三角形的傳遞性
如果△abc∽△a1b1c1,△a1b1c1∽△a2b2c2,那麼△abc∽a2b2c2
2樓:靳恭舜水
相似三角形的判定定理:
(1)如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那麼這兩個三角形相似,(簡敘為兩角對應相等兩三角形相似).
(2)如果一個三角形的兩條邊和另一個三角形的兩條邊對應成比例,並且夾角相等,那麼這兩個三角形相似(簡敘為:兩邊對應成比例且夾角相等,兩個三角形相似.)
(3)如果一個三角形的三條邊與另一個三角形的三條邊對應成比例,那麼這兩個三角形相似(簡敘為:三邊對應成比例,兩個三角形相似.)
直角三角形相似的判定定理:
(1)直角三角形被斜邊上的高分成兩個直角三角形和原三角形相似.
(2)如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那麼這兩個直角三角形相似.
相似三角形的性質定理:
(1)相似三角形的對應角相等.
(2)相似三角形的對應邊成比例.
(3)相似三角形的對應高線的比,對應中線的比和對應角平分線的比都等於相似比.
(4)相似三角形的周長比等於相似比.
(5)相似三角形的面積比等於相似比的平方.
相似三角形的傳遞性
如果△abc∽△a1b1c1,△a1b1c1∽△a2b2c2,那麼△abc∽a2b2c2
怎樣證明相似三角形,怎麼證相似三角形
冰夏 可以通過相似三角形判定定理來證明相似三角形。相似三角形的判定定理 1 平行於三角形一邊的直線和其他兩邊 或兩邊的延長線 相交,所構成的三角形與原三角形相似。2 如果一個三角形的兩條邊和另一個三角形的兩條邊對應成比例,並且夾角相等,那麼這兩個三角形相似。3 如果一個三角形的三條邊與另一個三角形的...
相似三角形怎麼學,相似三角形怎麼求
相似三角形的定義 對應角相等 對應邊成比例的兩個三角形叫做相似三角形。如果三邊分別對應a,b,c和a,b,c 那麼 a a b b c c 即三邊邊長對應比例相同。這是初中數學知識 平行於三角形一邊的直線截其它兩邊所在的直線,截得的三角形與原三角形相似。這是相似三角形判定的定理,是以下判定方法證明的...
證明是相似三角形的基本方法,證明三角形相似的常用方法
sorry楊亞威 一共有5種,嚴格來說是4種 1 用相似三角形的定義來證 三個角對應相等,三條邊對應成比例 應為這個方法太煩,所以基本用不上,可以把它逆用成性質 2 兩個三角形如果有兩角對應相等,那麼這兩個三角形相似 三角形中,兩個角形等相當於三個角相等,你可以畫兩個角相等的三角形,然後量量它們的邊...