若各項均為正數的數列an,其前n項和為sn,an

時間 2022-07-16 12:15:03

1樓:匿名使用者

n=1時, a1+1/a1=2s1=2a1, s1= a1=1

an+1/an=2sn

an^2+1=2sn*an an=sn-sn-1(sn-sn-1)^2=2sn(sn-sn-1)sn^2-[s(n-1)]^2=1

等差數列公差為1首項為1

sn^2=1+(n-1)*1=n

sn=√n

an=sn-sn-1=√n-√[n-1]

沒有必要那麼想的太複雜

2樓:

sn=1/2(an+1/an)①

s(n-1)=1/2(a(n-1)+1/a(n-1))②①-②,得an=1/2(an-a(n-1)+1/an-1/a(n-1))

即an+(a(n-1)+1/a(n-1))-1/an=0an^2+2s(n-1)an -1=0

由an>0解得an=√(s(n-1)^2+1)-s(n-1)=1/[√(s(n-1)^2+1)+s(n-1)]

代入①式得sn=√(s(n-1)^2+1)sn^2=s(n-1)^2+1

所以為首項1公差為1的等差數列

sn^2=n即sn=√n

an=sn-s(n-1)=√n-√(n-1)

已知數列an的各項均為正數,且前n項之和Sn滿足6Sn

解 1 當n 1時,由題意可得6a1 a 3a 2 a1 1或a1 2 當n 2時,6sn an 2 3an 2,6sn 1 an 1 2 3an 1 2,兩式相減可得 an an 1 an an 1 3 0由題意可得,an an 1 0 an an 1 3 當a1 1時,an 3n 2,此時a a...

各項均為正數的數列An中,Sn是數列An的前n項和,且任意n N,都有2Sn 2An 2 An

解 1 n 1時,2s1 2a1 2a1 a1 1,整理,得 2a1 a1 1 0 2a1 1 a1 1 0 a1 1 2 0,捨去 或a1 1 n 2時,2sn 2an an 1 2s n 1 2a n 1 a n 1 1 2sn 2s n 1 2an 2an an 1 2a n 1 a n 1 ...

已知各項均不為零的數列an的前n項和為Sn,且Sn an

1 an sn s n 1 ana n 1 2 ana n 1 2 an a n 1 a n 1 2 a n 1 a n 1 2 a1 s1 a1a2 2 a2 2 an n 2 sn 1 n n 2 a m 1 a m 2 am m 1 m 2 m m 2 n 3 m 1 n 3 攞你命三千 1 ...