這道二重積分怎麼算,二重積分怎麼計算?

時間 2021-09-02 18:10:13

1樓:匿名使用者

這個題目注意到兩個積分割槽域拼在一起剛好是一個八分之一圓,轉化為極座標形式,令x=rcos,y=rsin,注意極座標上下限的確定,然後就是轉化為二重積分有一個r不能丟了

2樓:

用極座標:

=∫(0,r/√2)∫(0,y)e^[-x²-y²]dxdy+∫(r/√2,r)∫(0,√(r²-y²))e^[-x²-y²]dxdy

積分割槽間:

前面:y=0~r/√2,x=0~y,y=x,y軸,y=r/√2圍成的△;

後面:y=r/√2~r,x=0~√(r²-y²),y軸,y=x,圓x²+y²=r²,y=r/√2圍成的第一象限的半個弓形。

兩者合起來,是圓x²+y²=r²,半徑位於π/4~π/2間的扇形。

θ=π/4~π/2,r=0~r

積分=∫(π/4,π/2)dθ∫(0,r)e^[-r²]rdr=(π/4).(1/2)∫(0,r)e^[-r²]dr²=-(π/8)e^[-r²](0,r)

=-(π/8)[e^[-r²]-1]

=(π/8)[1-1/e^r²]

二重積分怎麼計算?

3樓:人設不能崩無限

化為二次積分。

∫∫(x+y)dxdy=∫(0~1)dx∫(1~2) (x+y)dy=∫(0~1) (x+3/2)dx =1/2+3/2=2

二重積分是二元函式在空間上的積分,同定積分類似,是某種特定形式的和的極限。本質是求曲頂柱體體積。重積分有著廣泛的應用,可以用來計算曲面的面積,平面薄片重心等。

平面區域的二重積分可以推廣為在高維空間中的(有向)曲面上進行積分,稱為曲面積分。

4樓:wuli都靈

把二重積分化成二次積分,也就是把其中一個變數當成常量比如y,然後只對一個變數積分,得到一個只含y的被積函式,再對y積分就行了。你可以找一本高等數學書看看。

你這個題目積分割槽域中,x、y並不成函式關係,要是積分割槽域是由比如說1<=x<=2,y=f(x),y=g(x),所圍成的話,那麼就要先對y積分其中上下限就是f(x)、g(x),要看誰的圖形在上誰就是上限,這時候的x就當做一個常數來看待。

5樓:黃徐升

r1 對應圓弧,所以 r1=2 ,

r2 對應的是 y=2 這條直線,寫成極座標就是 r*sin(θ)=2 ,所以 r=2/sin(θ)

6樓:椋露地凜

利用極座標計算二重積分,有公式 ∫∫f(x,y)dxdy=∫∫f(rcosθ,rsinθ)rdrdθ ,其中積分割槽域是一樣的。 i=∫dx∫(x^2+y^2)^-1/2 dy x的積分上限是1,下限0 y的積分上限是x,下限是x2 積分割槽域d即為直線y=x,和直線y=x2在區間[0,1]所圍成的面積,轉換為極座標後,θ的範圍為[0,π/4],下面計算r的範圍:因為y=x2的極座標方程為:

rsinθ=r2cos2θ r=sinθ/cos2θ 因為直線y=kx和曲線y=x2的交點為(0,0),(k,k2),所以在極座標中r的取值範圍為[0,sinθ/cos2θ],則積分i化為極座標的積分為 i=∫dθ∫1/√(rcosθ)2+(rsinθ)2rdr =∫dθ∫dr (θ範圍[0,π/4],r範圍[0,sinθ/cos2θ]) =∫(sinθ/cos2θ)dθ(θ範圍[0,π/4]) =∫(-1/cos2θ)dcosθ =|1/cosθ|(θ範圍[0,π/4]) =1/cos(π/4)-1/cos0 =√2-1

7樓:愽

這是利用了二重積分的性質,二重積分可以化為兩個一重積分,因此①式中先對y變數求積分,這時x變數對於y變數來說是常數,所以對y的函式求得原函式後帶入積分限,即可將①式轉化為②式

8樓:漪善幽雪

利用二重積分的定義來計算二重積分顯然是不實際的,二重積分的計算是通過兩個定積分的計算(即二次積分)來實現的。

一、利用直角座標計算二重積分

我們用幾何觀點來討論二重積分 的計算問題。

討論中,我們假定 ;

假定積分割槽域可用不等式 表示,

其中, 在上連續。

據二重積分的幾何意義可知,的值等於以為底,以曲面為頂的曲頂柱體的體積。

在區間上任意取定一個點,作平行於面的平面,這平面截曲頂柱體所得截面是一個以區間為底,曲線為曲邊的曲邊梯形,其面積為

一般地,過區間上任一點且平行於面的平面截曲頂柱體所得截面的面積為

利用計算平行截面面積為已知的立體之體積的方法,該曲頂柱體的體積為

從而有(1)

上述積分叫做先對y,後對x的二次積分,即先把看作常數,只看作的函式,對計算從到的定積分,然後把所得的結果( 它是的函式 )再對從到計算定積分。

這個先對, 後對的二次積分也常記作

在上述討論中,假定了,利用二重積分的幾何意義,匯出了二重積分的計算公式(1)。但實際上,公式(1)並不受此條件限制,對一般的(在上連續),公式(1)總是成立的。

例如:計算

解:類似地,如果積分割槽域可以用下述不等式

表示,且函式,在上連續,在上連續,則

(2)顯然,(2)式是先對,後對的二次積分。

二重積分化二次積分時應注意的問題

1、積分割槽域的形狀

前面所畫的兩類積分割槽域的形狀具有一個共同點:

對於i型(或ii型)區域, 用平行於軸(軸 )的直線穿過區域內部,直線與區域的邊界相交不多於兩點。

如果積分割槽域不滿足這一條件時,可對區域進行剖分,化歸為i型(或ii型)區域的並集。

2、積分限的確定

二重積分化二次積分, 確定兩個定積分的限是關鍵。這裡,我們介紹配置二次積分限的方法 -- 幾何法。

畫出積分割槽域的圖形(假設的圖形如下 )

在上任取一點,過作平行於軸的直線,該直線穿過區域,與區域的邊界有兩個交點與,這裡的、就是將,看作常數而對積分時的下限和上限;又因是在區間上任意取的,所以再將看作變數而對積分時,積分的下限為、上限為。

【例1】計算,其中是由軸,軸和拋物線在第一象限內所圍成的區域。

類似地,

【例2】計算, 其中是由拋物線及直線所圍成的區域。

【例3】求由曲面及所圍成的立體的體積。

解: 1、作出該立體的簡圖, 並確定它在面上的投影區域

消去變數得一垂直於面的柱面 ,立體鑲嵌在其中,立體在面的投影區域就是該柱面在面上所圍成的區域

2、列出體積計算的表示式

3、配置積分限, 化二重積分為二次積分並作定積分計算

而 由,的對稱性有

所求立體的體積為

二、利用極座標計算二重積分

1、變換公式

按照二重積分的定義有

現研究這一和式極限在極座標中的形式。

用以極點為中心的一族同心圓 以及從極點出發的一族射線 ,將剖分成個小閉區域。

除了包含邊界點的一些小閉區域外,小閉區域的面積可如下計算

其中,表示相鄰兩圓弧半徑的平均值。

(數學上可以證明: 包含邊界點的那些小閉區域所對應項之和的極限為零, 因此, 這樣的一些小區域可以略去不計)

在小區域上取點,設該點直角座標為,據直角座標與極座標的關係有於是即

由於也常記作, 因此,上述變換公式也可以寫成更富有啟發性的形式

(1)(1)式稱之為二重積分由直角座標變數變換成極座標變數的變換公式,其中,就是極座標中的面積元素。

(1)式的記憶方法:

2、極座標下的二重積分計演算法

極座標系中的二重積分, 同樣可以化歸為二次積分來計算。

【情形一】積分割槽域可表示成下述形式

其中函式, 在上連續。

則【情形二】積分割槽域為下述形式

顯然,這只是情形一的特殊形式( 即極點在積分割槽域的邊界上 )。

故【情形三】積分割槽域為下述形式

顯然,這類區域又是情形二的一種變形( 極點包圍在積分割槽域的內部 ),可剖分成與,而故則

由上面的討論不難發現, 將二重積分化為極座標形式進行計算, 其關鍵之處在於: 將積分割槽域用極座標變數表示成如下形式

下面通過例子來介紹如何將區域用極座標變數來表示。

【例4】將下列區域用極座標變數表示

1、2、

3、ê先畫出區域的簡圖, 據圖確定極角的最大變化範圍;

ë再過內任一點作射線穿過區域,與區域的邊界有兩交點,將它們用極座標表示,這樣就得到了極徑的變化範圍。

注: 本題不能利用直角座標下二重積分計演算法來求其精確值。

利用此題結果可求出著名概率積分 。

而被積函式滿足 ,從而以下不等式

成立,再利用例二的結果有,,

於是不等式可改寫成下述形式

故當時有 ,

即 。

3、使用極座標變換計算二重積分的原則

(1)、積分割槽域的邊界曲線易於用極座標方程表示( 含圓弧,直線段 );

(2)、被積函式表示式用極座標變數表示較簡單( 含, 為實數 )。

【例6】計算

解此積分割槽域為

區域的簡圖為

該區域在極座標下的表示形式為

9樓:匿名使用者

體積=∫(0,1)dz∫∫dzdxdy

其中dz:9x²+y²≤z

原式=∫(0,1)π×1/3×z dz

=π/6 z²|(0,1)

=π/6

10樓:匿名使用者

化累次積分

∫∫(x+y)dxdy=∫(0~1)dx∫(1~2) (x+y)dy=∫(0~1) (x+3/2)dx =1/2+3/2=2

11樓:攞你命三千

∫(-1→2)dx∫(x²-2→x²+1)x(x²-y)dy

=∫(-1→2)dx∫(x²-2→x²+1)(x³-xy)dy=∫(-1→2)(x³y-½xy²)|(y=x²-2→x²+1)dx=∫(-1→2)[x³(x²+1)-½x(x²+1)²]-[x³(x²-2)-½x(x²-2)²]dx

=∫(-1→2)[(x^5+x³-½x^5-x³-½x)-(x^5-2x³-½x^5+4x³-4x)]dx

=∫(-1→2)[-2x³+(7/2)x]dx=[-½x^4+(7/4)x²]|(x=-1→2)=[-½×16+(7/4)×4]-[-½×1+(7/4)×1]=(-8+7)-(5/4)

=-9/4

12樓:匿名使用者

如果只學到定積分,要理解二重積分還有很多要學。首先空間解析幾何、向量代數、多元函式極限、連續、微分等等。不過求二重積分是化為二次定積分求得的。

13樓:匿名使用者

^|換元:x=rcosθ,y=rsinθ,j=r,原式=∫<-π/2,π/2>dθ∫<0,acosθ>a^*rdr/√(a^-r^)

=a^∫<-π/2,π/2>dθ*[-√(a^-r^)]|<0,acosθ>

=a^∫<-π/2,π/2>dθ*|a|[1-|sinθ|]=2a^*|a|∫<0,π/2>(1-sinθ)dθ=2a^*|a|(θ+cosθ)|<0,π/2>=2a^*|a|(π/2-1).

二重積分的計算,二重積分怎麼計算

似紅豆 利用極座標計算二重積分,有公式 f x,y dxdy f rcos rsin rdrd 其中積分割槽域是一樣的。i dx x 2 y 2 1 2 dy x的積分上限是1,下限0 y的積分上限是x,下限是x 積分割槽域d即為直線y x,和直線y x 在區間 0,1 所圍成的面積,轉換為極座標後...

高數二重積分,高數二重積分 。。

聖克萊西亞 嚴格來說,並不是只有x對稱或y對稱才滿足積分為零的情況。由對稱性推導二重積分為零的原理,是出於以下的狀況 1 積分割槽域由於對稱性被分為相等的兩部分a1和a2,且存在一個一一對映,使得a1部分的任意一個面積微分ds1,在a2中存在唯一的面積微分ds2與之對應。2 對於相互對應的面積微分,...

二重積分問題求解,求解二重積分問題

先畫出積分割槽域,積分割槽域關於x軸對稱,被積函式關於y是偶函式,根據對稱性可以只算一半積分割槽域,化為極座標後,把積分割槽域分為兩個部分,分界線是 3,因為兩個圓相交的那個三角形是等邊三角形 x 2 y 2 2x 極座標即為 r 2cost,x 2 y 2 1 極座標即為 r 1,聯立解 r 2c...