1樓:飄渺的綠夢
我估計你是少寫括號了!給定的函式應該是:y=(x+1)/(x-1)。
引入兩個自變數:x1、x2,且x1<x2<1。
顯然有:x1-x2<0、x1-1<0、x2-1<0,∴(x1-1)(x2-1)>0。
x2+1)/(x2-1)-(x1+1)/(x1-1)[1+2/(x2-1)]-1+2/(x1-1)]=2[1/(x2-1)-1/(x1-1)]
2[(x1-1)-(x2-1)]/x1-1)(x2-1)]2(x1-x2)/[x1-1)(x2-1)]<0。
函式y=(x+1)/(x-1)在區間(-∞1)上是單調遞減函式。
注:y=x+1/x-1的意思是y=x+(1/x)-1。所以應注意括號的正確使用,以免造成誤解。
2樓:網友
1,若學過導數就很簡單啦,y'=1-1/x^2=(x^2-1)/x^2<0 即此函式為單調遞減函式。
2,定義,設x1該函式在(-∞1),(1,+∞為增函式,在(-1,0),(0,1)為減函式。這種函式俗稱打鉤函式。
3樓:網友
我估計你是括號!給定的函式應該為:y =第(x +1)/(x-1的)。
引進兩個獨立的變數x1,x2,x1 = 2(x1-x2)/ 的x1-1)(×2-1)] 0。的。
函式y =第(x +1)/(x-1的),在區間( -1)是單調遞減函式。
注意為:y = x + 1的/ x的的意思,在y = 1 / x)的-1。因此,要注意正確使用括號,這樣才能避免誤解。
函式y=x+1單調遞減嗎?
4樓:網友
y=x+1/x
y'=1+(-1)x^(-2)
y''=1)*(2)x^(-3)=2x^(-3)令y'=0,得:x=-1或x=1
即在x=-1或x=1處有極值。
當x=-1時,y''=2《基餘神0,所以x=-1是極大值搏虧。
當x=1時,y''=2>0,所以x=1是極小值。
所以單調區間是毀凱:,1]單調遞增。
1,0)單調遞減。
0,1)單調遞減。
1,+∞單調遞增。
函式y=x+1/xy是單調遞減還是單調遞增?
5樓:網友
y=x+1/x
y'=1+(-1)x^(-2)
y''=1)*(2)x^(-3)=2x^(-3)令y'=0,得:x=-1或x=1
即在x=-1或x=1處有極值。
當x=-1時,y''=2《基餘神0,所以x=-1是極大值搏虧。
當x=1時,y''=2>0,所以x=1是極小值。
所以單調區間是毀凱:,1]單調遞增。
1,0)單調遞減。
0,1)單調遞減。
1,+∞單調遞增。
若y=x+1/x在(-∞,0)∪(0,+∞)上單調遞增,?
6樓:單墨徹衣茶
解:∵y=x+1/x
此函式的定義域是(-∞0)∪(0,+∞
y'=1-1/x²=(x²-1)/x²
令y'=0,得x=±1
當x∈鉛卜或(-∞1]∪[1,+∞時,y'>0,則y單調遞增。
當x∈[-1,0)∪(0,1]時,y'<0,則y單弊御調遞減。
函式y=x+1/x單調遞增是:(-1]∪[1,+∞函式y=x+1/x單調遞減是:[-1,0)∪(0,1]。
補充:對於y=ax+b/槐伍x.
a,b>0)
單調區間:單調遞減:
x>√(a/b)
或x<-√a/b).
單調遞增:√(a/b)或。0可以利用這類函式的單調性解很多題,可以畫草圖。
函式y=x在[1,+∞)上的單調遞減區間是?
7樓:帳號已登出
乙個關於取整函式的不等式證明:
當x>0時,要證1-x<x[ 1/x]≤1 ,兩邊同除x。
即(1/x)-1<[ 1/x]≤1/x。
因為y=[x]是取整函式,就是取x的整數部分,如[。
所以後半個不等式[ 1/x]≤1/x,顯然成立。
左=[2x-[x]+[y]]+2y-2[y]]+x]+[y]
x+y]=[x]+[y]+1時,則滿足2(x-[x])≥1或2(y-[y])≥1
x]+[y]+2(x-[x])]2(y-[明孫y])]x]+[y]+1或[x]+[y]+2
x]+[y]+2(x-[x])]2(y-[y])]x]+[y]+1
x+y]=[x]+[y]時,[2(x-[x]]=1or0,[2(y-[y])]1or0
x]+[y]+2(x-[x])]2(y-[y])]x]+[y]+1
函式的近代定義。
是給定乙個數集a,假設其中的元素為x,對a中的元素x施加對應法則f,記作f(x),得到另一數集b,假設b中世御的元素為y,則y與激返鏈x之間的等量關係可以用y=f(x)表示,函式概念含有三個要素:定義域a、值域b和對應法則f。其中核心是對應法則f,它是函式關係的本質特徵。
函式y=x²-2x+1在[1,+∞)上為單調減函式?
8樓:喜歡喝酒的老道
結論:不是減函式。
解釋:y=x²-2x+1,即為y=(x-1)²,對稱軸為x=1,當x=1時有極小值y=0,單調性:當x<1時,單調遞減,當x>1時,單調遞增。
因此在1到正無窮這個定義域裡,這個函式是單調增函式。
9樓:愛吃_小橘子
這是乙個簡單的拋物線,如果你是初中生,可以畫出草圖根據對稱軸判斷,如果已經學過導數,可以直接求導,結果是在[1,+∞單調遞增。
怎麼證明y=(1+1/x)^(x+1)單調減少?求過程
10樓:素白
定義域x不等於0
兩邊同時取對數。
e^lny=e^(x+1)ln(1+1/x)求導。e^lny)y'=(e^(x+1)ln(1+1/x))(ln(1+1/x))(x+1)(1/(1+1/x))(1/x^2)
化簡。yy'=-((1+1/x)^(x+1))(ln(1+1/x))(1/x)
所以。y'=-(ln(1+1/x))/x
當x大於0,y『恆小於0
當x小於0,y』同樣恆小於0
所以y單減。
證明:函式y=1/x在區間(0,+無窮)上為單調遞減函式
11樓:網友
證明:在(0,+無窮)上任取x1>x2>0.
那麼f(x1)-f(x2)=1/x1-1/x2=(x2-x1)/(x1x2)
由於x2-x1<0,x1x2>0
所以,f(x1)-f(x2)<0
即f(x1)所以,函式在(0,+無窮)上是減函式。
12樓:無痕_殤
令x2>x1>0
那麼f(x2)-f(x1)=1/x2-1/x1=(x1-x2)/(x1x2)
因為x1-x2<0,x1x2>0
所以f(x2)-f(x1)<0
得f(x)=1/x在(0,+無窮)上為單調遞減函式。
x 1是函式y x 1 x 1的A連續點B
西域牛仔王 因為 x 1 時,y 1 3 所以x 1時函式的可去間斷點。選b。點x 1是函式f x arccot1 1 x的 a連續點b可去型間斷點c跳躍型間斷點d無窮型間斷點,求思考過程!謝謝 華爾真 f x 0,令f x arccot u,u 1 1 x u x 且x 1,當x 1 u lim ...
函式y x 1 x 1 的值域怎麼求
y x 1 1 x 1 1 當x 1 0時 x 1 1 x 1 2 y 1 當x 1 0時 x 1 1 x 1 2 y 3 值域是 3 1, y x 1 x 1 x 1 1 x 1 1若x 1 0,則y 2 1 1 若x 1 0,則y 2 1 3 所以值域為 3 1, 丙子庚辰 y x 1 x 1 ...
畫出y x 1 x的影象的過程,函式 y x 1 x 1 的影象怎麼畫出
我想你要問的大概不是 用軟體 方法,也不是 用導數 方法。那麼我就告訴 用疊加 方法。所謂 疊加方法 就是要畫出函式y f x g x 的圖形,可以在同一個座標系中 正確畫出y f x 記為y1 f x 和y g x 記為y2 g x 一般這些都是基本的,現成的。利用帶刻度的直尺,畫出函式圖形上對應...