微分方程已知特解求通解,知道非其次微分方程的兩個特解怎麼求通解

時間 2021-05-07 20:01:17

1樓:墨汁諾

非齊次線性微分方程的解, 等於一個特解加上對應齊次方程的通解。

y = 3 就是那個特解。

x^n+a1x^(n-1)+a2x^(n-2)+…+a(n-1)x+an=0

這就是線性方程。右端等於0,說明它是齊次方程;右端不等於0,說明它是非齊次方程。

這是針對齊次方程、非齊次方程來說的。

那麼微分方程類似,無非是左端x的k次方通通變成x關於t的k階導數。

即x^(n)+a1*x^(n-1)+…+a(n-1)*x'+an*x=0

(x^(k)就是x的k階導數)

同理,右端等於0,這是一個齊次微分方程,求出來的解就是通解x(t);如果右端不等於0,而是一個f(t),那麼求出來的解就是一個滿足右端是f(t)的特解x*(t)!!!

整個微分方程的解x=x(t)+x*(t)!!!

知道非其次微分方程的兩個特解怎麼求通解

2樓:angela韓雪倩

通解是特解的線性組合,y=c1·y1+c2·y2,如果y1和y2線性無關的話。

一階線性微分方程可分兩類,一類是齊次形式的,它可以表示為y'+p(x)y=0,另一類就是非齊次形式的,它可以表示為y'+p(x)y=q(x)。

齊次線性方程與非齊次方程比較一下對理解齊次與非齊次微分方程是有利的。對於非齊次微分方程的解來講,類似於線性方程解的結構結論還是成立的。就是:

非齊次微分方程的通解可以表示為齊次微分方程的通解加上一個非齊次方程的特解。

3樓:好主意公民

方程的通解,而不是齊次方程的通解;b、非齊次方程的通解,可以根據齊次方程的特解來確... variation of constant。 下面給樓主提供示例 exemplification,同一道微分方程題,提供不同

求微分方程特解通解

微分方程的特解怎麼求

4樓:安貞星

二次非齊次微分方程的一般解法

一般式是這樣的ay''+by'+cy=f(x)

第一步:求特徵根

令ar²+br+c=0,解得r1和r2兩個值,(這裡可以是複數,例如(βi)²=-β²)

第二步:通解

1、若r1≠r2,則y=c1*e^(r1*x)+c2*e^(r2*x)

2、若r1=r2,則y=(c1+c2x)*e^(r1*x)

3、若r1,2=α±βi,則y=e^(αx)*(c1cosβx+c2sinβx)

第三步:特解

f(x)的形式是e^(λx)*p(x)型,(注:p(x)是關於x的多項式,且λ經常為0)

則y*=x^k*q(x)*e^(λx) (注:q(x)是和p(x)同樣形式的多項式,例如p(x)是x²+2x,則設q(x)為ax²+bx+c,abc都是待定係數)

1、若λ不是特徵根 k=0 y*=q(x)*e^(λx)

2、若λ是單根 k=1 y*=x*q(x)*e^(λx)

3、若λ是二重根 k=2 y*=x²*q(x)*e^(λx)(注:二重根就是上面解出r1=r2=λ)

f(x)的形式是e^(λx)*p(x)cosβx或e^(λx)*p(x)sinβx

1、若α+βi不是特徵根,y*=e^λx*q(x)(acosβx+bsinβx)

2、若α+βi是特徵根,y*=e^λx*x*q(x)(acosβx+bsinβx)(注:ab都是待定係數)

第四步:解特解係數

把特解的y*'',y*',y*都解出來帶回原方程,對照係數解出待定係數。

最後結果就是y=通解+特解。

通解的係數c1,c2是任意常數。

拓展資料:

微分方程

微分方程指描述未知函式的導數與自變數之間的關係的方程。微分方程的解是一個符合方程的函式。而在初等數學的代數方程,其解是常數值。

高數常用微分表

唯一性存在定一微 分程及約束條件,判斷其解是否存在。唯一性是指在上述條件下,是否只存在一個解。針對常微分方程的初值問題,皮亞諾存在性定理可判別解的存在性,柯西-利普希茨定理則可以判別解的存在性及唯一性。

針對偏微分方程,柯西-克瓦列夫斯基定理可以判別解的存在性及唯一性。 皮亞諾存在性定理可以判斷常微分方程初值問題的解是否存在。

5樓:匿名使用者

微分方程的特解步驟如下:

一個二階常係數非齊次線性微分方程,首先判斷出是什麼型別的。

然後寫出與所給方程對應的齊次方程。

接著寫出它的特徵方程。由於這裡λ=0不是特徵方程的根,所以可以設出特解。

把特解代入所給方程,比較兩端x同次冪的係數。

舉例如下:

6樓:耐懊鶴

∵齊次方程y''-5y'+6y=0的特徵方程是r²-5r+6=0,則r1=2,r2=3

∴齊次方程y''-5y'+6y=0的通解是y=c1e^(2x)+c2e^(3x) (c1,c2是積分常數)

∵設原方程的解為y=(ax²+bx)e^(2x)

代入原方程,化簡整理得-2axe^(2x)+(2a-b)e^(2x)=xe^(2x)

==>-2a=1,2a-b=0

==>a=-1/2,b=-1

∴原方程的一個解是y=-(x²/2+x)e^(2x)

於是,原方程的通解是y=c1e^(2x)+c2e^(3x)-(x²/2+x)e^(2x) (c1,c2是積分常數)

∵y(0)=5,y'(0)=1 ==>c1+c2=5,2c1+3c2-1=11

∴c1=3,c2=2

故原方程在初始條件y(0)=5,y'(0)=1下的特解是y=3e^(2x)+2e^(3x)-(x²/2+x)e^(2x)

即y=(3-x-x²/2)e^(2x)+2e^(3x).

7樓:匿名使用者

微分方程的特解怎麼求?你是80我也不會。有時間我告訴你。

8樓:匿名使用者

這個提示非常難的,我覺得具有這方面的學生或者是老師幫來解答,知道你是學生還是什麼?如果你是學生的話,你可以問以前老師,不要不好意思的

求微分方程通解,求詳細過程,求微分方程通解,要詳細步驟

關素枝保婉 首先,把原式化簡一下,等式兩邊先同時除以dx,再同時除以x,就可以得到 y x 1 y x dy dx 0的等式 0 設u y x 1 推出dy dx xdu dx u 2 將 1 2 同時帶入 0 式 u 1 u xdu dx u 0 化簡以後可以得到 x 1 u du dx u 2 ...

微積分 求下列微分方程的通解,求微分方程通解,要詳細步驟

a dy dx 2xy 0 dy dx 2xy dy y 2x dx ln y x 2 c y c.e x 2 b dy dx xy 2x dy dx x y 2 dy y 2 xdx ln y 2 1 2 x 2 c y 2 ce 1 2 x 2 y 2 ce 1 2 x 2 a dy dx 2x...

求微分方程的通解 y y y

此題解法如下 1 y dx 1 x dy 0 dx dy ydx xdy 0 dx dy ydx xdy 0 x y xy c c是常數 此方程的通解是x y xy c。y 6x dy dx 2y 0 dy y 6xdy y 4 2dx y 0 等式兩端同除y 4 dy y 2xd 1 y d 2x...