三階常係數微分方程的通解怎麼求,微分方程的通解怎麼求?

時間 2021-08-11 17:06:49

1樓:關鍵他是我孫子

常係數線性微分方程:y″′-2y″+y′-2y=0,①①對應的特徵方程為:

λ3-2λ2+λ-2=0,②

將②化簡得:

(λ2+1)(λ-2)=0,

求得方程②的特徵根分別為:λ1=2,λ2=±i,於是方程①的基本解組為:e2x,cosx,sinx,從而方程①的通解為:

y(x)=c1e2x+c2cosx+c3sinx,其中c1,c2,c3為任意常量。

2樓:娛樂大潮咖

特徵根法是解常係數齊次線性微分方程的一種通用方法。

具體求法如下:

設特徵方程

① 若實根r1不等於r2

② 若實根r1=r2

③ 若有一對共軛復根a±bi

擴充套件資料:一類重特徵根對方程解的簡便解法:

對於常係數齊次線性微分方程組

當矩陣a的特徵根

的重數是

對應的mi個初等因子是

時,它對應方程中ni個線性無關解,其結構形如此時多項式

的次數小於等於

由於mi計算起來非常困難,本文利用相似矩陣的特點和jordan標準型在

與之間找到了一個便於應用的多項式

次數的上界,使計算起來更加方便和有效。

3樓:

與二階完全一樣,求特徵方程的根。只不過可能出現三重根,就有1,x,x^2

4樓:匿名使用者

一般n階可以通過變換降成n個一階的ode方程組= =~

微分方程的通解怎麼求?

5樓:汗海亦泣勤

^已知微分方程的通解怎麼求這個微分方程

答:求導!如:

1。x^2-xy+y^2=c等式兩邊對x求導:2x-y-x(dy/dx)+2y(dy/dx)=0故dy/dx=(2x-y)/(x-2y);或寫成2x-y-(x-2y)y′=0

若要求二階微分方程則需再求導一次:

2-y′-(1-2y′)y′+(x-2y)y〃=02。e^(-ay)=c1x+c2

-ay′e^(-ay)=c₁(一階微分方程)-ay〃e^(-ay)-ay′(-ay′)e^(-ay)=0,即a²(y′)²-ay〃=0(二階微分方程)

6樓:秦桑

此題解法如下:

∵ (1+y)dx-(1-x)dy=0

==>dx-dy+(ydx+xdy)=0

==>∫dx-∫dy+∫(ydx+xdy)=0==>x-y+xy=c (c是常數)

∴ 此方程的通解是x-y+xy=c。

7樓:逯暮森香梅

祝:學習棒棒噠!^.^

8樓:匿名使用者

[高數]變限積分求導易錯點

9樓:匿名使用者

解:∵(1+y)dx-(1-x)dy=0

==>dx-dy+(ydx+xdy)=0

==>∫dx-∫dy+∫(ydx+xdy)=0==>x-y+xy=c (c是常數)

∴此方程的通解是x-y+xy=c。

10樓:糜穆嶽葉舞

題目是不是弄錯了啊,是y''+2y'-3y=0吧如果是y"+2y'-3y=o過程如下:

解:該微分方程的特徵方程為r∧2+2r-3=0解得r1=-3,r2=1

∴微分方程的通解為y=c1e∧-3x+c2e∧x

微分方程的通解怎麼求

11樓:匿名使用者

微分方程的解通常是一個函式表示式y=f(x),(含一個或多個待定常數,由初始條件確定)。

例如:其解為:

其中c是待定常數;

如果知道

則可推出c=1,而可知 y=-\cos x+1。

一階線性常微分方程

對於一階線性常微分方程,常用的方法是常數變易法:

對於方程:y'+p(x)y+q(x)=0,可知其通解:

然後將這個通解代回到原式中,即可求出c(x)的值。

二階常係數齊次常微分方程

對於二階常係數齊次常微分方程,常用方法是求出其特徵方程的解

對於方程:

可知其通解:

其特徵方程:

根據其特徵方程,判斷根的分佈情況,然後得到方程的通解

一般的通解形式為:若則有

若則有在共軛複數根的情況下:

r=α±βi

擴充套件資料

一階微分方程的普遍形式

一般形式:f(x,y,y')=0

標準形式:y'=f(x,y)

主要的一階微分方程的具體形式

約束條件

微分方程的約束條件是指其解需符合的條件,依常微分方程及偏微分方程的不同,有不同的約束條件。

常微分方程常見的約束條件是函式在特定點的值,若是高階的微分方程,會加上其各階導數的值,有這類約束條件的常微分方程稱為初值問題。

若是二階的常微分方程,也可能會指定函式在二個特定點的值,此時的問題即為邊界值問題。若邊界條件指定二點數值,稱為狄利克雷邊界條件(第一類邊值條件),此外也有指定二個特定點上導數的邊界條件,稱為諾伊曼邊界條件(第二類邊值條件)等。

偏微分方程常見的問題以邊界值問題為主,不過邊界條件則是指定一特定超曲面的值或導數需符定特定條件。

唯一性存在性是指給定一微分方程及約束條件,判斷其解是否存在。唯一性是指在上述條件下,是否只存在一個解。

針對常微分方程的初值問題,皮亞諾存在性定理可判別解的存在性,柯西-利普希茨定理 [4]  則可以判別解的存在性及唯一性。

針對偏微分方程,柯西-克瓦列夫斯基定理可以判別解的存在性及唯一性。 皮亞諾存在性定理可以判斷常微分方程初值問題的解是否存在。

12樓:兔斯基

非齊次的特解帶入非齊次方程中,如下詳解望採納

13樓:惜君者

^先求對應的齊次方程dy/dx=2y/(x+1)的通解dy/y=2dx/(x+1)

ln|y|=2ln|x+1|+ln|c|

y=c (x+1)²

由常數變易法,令y=c(x)(x+1)²

則dy/dx=c'(x)(x+1)²+2c(x)(x+1)代入原方程得

c'(x)(x+1)²=(x+1)^(5/2)c'(x)=(x+1)^(1/2)

c(x)=2/3 (x+1)^(3/2)+c故原方程的通解為y=2/3 (x+1)^(7/2) +c(x+1)²

二階微分方程求通解,高等數學,二階微分方程,求通解,需要詳細步驟,謝謝

求微分方程 y 2y y 5e x 的通解 解 齊次方程 y 2y y 0的特徵方程 r 2r 1 r 1 0的根r r 1 因此齊次方程的 通解為 y e x c c x 因為原方程右邊的5e x 中的指數所含 1正好是特徵方程的重根,因此要設特解為 y ax e x y 2axe x ax e ...

微積分 求下列微分方程的通解,求微分方程通解,要詳細步驟

a dy dx 2xy 0 dy dx 2xy dy y 2x dx ln y x 2 c y c.e x 2 b dy dx xy 2x dy dx x y 2 dy y 2 xdx ln y 2 1 2 x 2 c y 2 ce 1 2 x 2 y 2 ce 1 2 x 2 a dy dx 2x...

求二階微分方程的通解,高等數學,二階微分方程,求通解,需要詳細步驟,謝謝

2y y y 3e x,先求齊次方程通解。令2t 2 t 1 0,解得t 1或1 2即齊次解為y a e x b e 1 2x 其中a,b r 再求1個特解即可。令y c e x,則2c c c 3,即c 3 2故問題的解為3 2 e x a e x b e x 2 其中a,b r 北極灬寒冰 可以...