求微分方程y6y 9y 0的通解 詳細過程 謝謝

時間 2021-10-14 20:22:15

1樓:匿名使用者

y = (c1 + c2 x ) e^(3x)解題過程如下:

解:y''-6y'+9y=0

特徵方程 r^2 - 6r +9=0

解得r1,2 = 3

所以通解 y = (c1 + c2 x ) e^(3x)常微分方程的概念、解法、和其它理論很多,比如,方程和方程組的種類及解法、解的存在性和唯一性、奇解、定性理論等等。下面就方程解的有關幾點簡述一下,以瞭解常微分方程的特點。

求通解在歷史上曾作為微分方程的主要目標,一旦求出通解的表示式,就容易從中得到問題所需要的特解。也可以由通解的表示式,瞭解對某些引數的依賴情況,便於引數取值適宜,使它對應的解具有所需要的效能,還有助於進行關於解的其他研究。

後來的發展表明,能夠求出通解的情況不多,在實際應用中所需要的多是求滿足某種指定條件的特解。當然,通解是有助於研究解的屬性的,但是人們已把研究重點轉移到定解問題上來。

2樓:匿名使用者

解:y''-6y'+9y=0

特徵方程 r^2 - 6r +9=0

解得r1,2 = 3

所以通解 y = (c1 + c2 x ) e^(3x)

求微分方程y4y 4y e 2x的通解

特徵方程為r 2 4r 4 0 則r1 r2 2,齊次方程通解為 c1 c2x e 2x 而右邊e 2x 指數係數含有 2,所以特解可設為 q x ax 2e 2x 則 q x a 2x 2x 2 e 2x q x a 2 8x 4x 2 e 2x 帶入得a 2 8x 4x 2 e 2x 4a 2x...

求微分方程y dy dx x 1 y 2 的通解

整理得ydy 1 y xdx 積分,ydy 1 y xdx 1 2 ln 1 y x 2 c ln 1 y x c 1 y ce x y 1 ce x 為通解 令u x 3,v y 2,那麼x u 3,y v 2,dy dx d v 2 d u 3 dv du dv du 2 v 2 2 u 3 v...

求下列微分方程的通解,xdy dx yIn 2 yy 1 2 dx x 3 0,dy dx 2 x y ,幫忙算下,給過程6x y

1.求xdy dx yin y通解 解 xdy dx yin y dy yin y dx x d lny in y dx x 1 lny ln x c c是積分常數 經檢驗y 1也是原方程的解 原方程的通解是y 1或 1 lny ln x c c是積分常數 2.求 y 1 dy dx x 0通解 解...