如果線性迴歸模型的隨機誤差項存在異方差,則引數的普通最小二乘

時間 2021-05-07 20:01:56

1樓:

當然是選 d

當然有偏 但最小二乘量是最小的

如果迴歸模型的隨機誤差項存在異方差性,會對線性迴歸分析造成什麼影響

2樓:匿名使用者

若誤差方差或因變數方差不滿足方差齊性條件,則在不同的x取值處,y的實回際分散程度答不同,則迴歸線的**在不同的x點準確度不同,迴歸**效果不穩定,或者說此時在不同的x水平,其與y的關係是有很大差別的,無法用單一的迴歸方程去**y。

比如下方這個圖:

a是滿足方差齊性的,b不滿足,很明顯a的迴歸直線**作用要好於b,在不同的x點處的**效果也穩定

線性迴歸模型,解釋斜率的普通最小二乘估計量是如何決定的

3樓:致逝煙忱

為什麼在對引數進行最小二乘估計之前,要對模型提出古典假定?答:在古典假定條回件下,ols估計

答得到的引數估計量是該引數的最佳線性無偏估計,具有無偏性、有效性、線性.總之,作古典假定是為了使所作出的估計具有較好的統計性質和方便地進行統計推斷.

產生異方差性的原因及異方差性對模型的ols估計有何影響

4樓:匿名使用者

產生原因:(1)模型中遺漏了某些解釋變數;(2)模型函式形式的設定誤差;回(3)樣本資料的測量誤差;(答4)隨機因素的影響。

產生的影響:如果線性迴歸模型的隨機誤差項存在異方差性,會對模型引數估計、模型檢驗及模型應用帶來重大影響,主要有:(1)不影響模型引數最小二乘估計值的無偏性;(2)引數的最小二乘估計量不是一個有效的估計量;(3)對模型引數估計值的顯著性檢驗失效;

(4)模型估計式的代表性降低,**精度精度降低。

當面臨的模型存在異方差問題時,應用普通最小二乘法估計會出現怎樣的問題

5樓:匿名使用者

當存在異方差問題時,利用最小二乘法估計的無偏性將失效。

隨機誤差項的方差為什麼是相同的

6樓:手機使用者

隨機誤差項μ的條件同方差意味著μ的方差不依賴於x的變化而變化,且總為常數σ的平方。

7樓:蒲公英花開丶

計量經濟學:如果線性迴歸模型的隨機誤差項存在異方差,則引數的普通最小二乘當然是選 d 當然有偏 但最小二乘量是最小的。

隨機誤差也稱為偶然誤差和不定誤差,是由於在測定過程中一系列有關因素微小的隨機波動而形成的具有相互抵償性的誤差。其產生的原因是分析過程中種種不穩定隨機因素的影響,如室溫、相對溼度和氣壓等環境條件的不穩定,分析人員操作的微小差異以及儀器的不穩定等。隨機誤差的大小和正負都不固定,但多次測量就會發現,絕對值相同的正負隨機誤差出現的概率大致相等,因此它們之間常能互相抵消,所以可以通過增加平行測定的次數取平均值的辦法減小隨機誤差。

序列相關性和異方差性什麼區別

舉例說明什麼是異方差性

8樓:行者行者行

異方差性(heteroscedasticity )是相對於同方差而言的。所謂同方差,是為了保證迴歸引數估計量具有良好的統計性質,經典線性迴歸模型的一個重要假定:總體迴歸函式中的隨機誤差項滿足同方差性,即它們都有相同的方差。

如果這一假定不滿足,即:隨機誤差項具有不同的方差,則稱線性迴歸模型存在異方差性。

若線性迴歸模型存在異方差性,則用傳統的最小二乘法估計模型,得到的引數估計量不是有效估計量,甚至也不是漸近有效的估計量;此時也無法對模型引數的進行有關顯著性檢驗。

對存在異方差性的模型可以採用加權最小二乘法進行估計。

異方差性的檢測——white test

在此檢測中,原假設為:迴歸方程的隨機誤差滿足同方差性。對立假設為:

迴歸方程的隨機誤差滿足異方差性。判斷原則為:如果nr^2>chi^2 (k-1),則原假設就要被否定,即迴歸方程滿足異方差性。

在以上的判斷式中,n代表樣本數量,k代表引數數量,k-1代表自由度。chi^2值可由查表所得。

2含義編輯

迴歸模型的隨機擾動項ui在不同的觀測值中的方差不等於一個常數,var(ui)= 常數(i=1,2,…,n),或者var(u ) var(u )(i j),這時我們就稱隨機擾動項ui具有異方差性(heteroskedasticity)。

在實際經濟問題中,隨機擾動項ui往往是異方差的,但主要在截面資料分析中出現。

例如(1)調查不同規模公司的利潤,發現大公司的利潤波動幅度比小公司的利潤波動幅度大;

(2)分析家庭支出時發現高收入家庭支出變化比低收入家庭支出變化大。

在分析家庭支出模型時,我們會發現高收入家庭通常比低收入家庭對某些商品支出有更大的方差;圖5-1顯示了一元線性迴歸中隨機變數的方差ui隨著解釋變數 的增加而變化的情況。

異方差性破壞了古典模型的基本假定,如果我們直接應用最小二乘法估計迴歸模型,將得不到準確、有效的結果。

**1.模型中缺少某些解釋變數,從而隨機擾動項產生系統模式

由於隨機擾動項ui包含了所有無法用解釋變數表示的各種因素對被解釋變數的影響,即模型中略去的經濟變數對被解釋變數的影響。如果其中被略去的某一因素或某些因素隨著解釋變數觀測值的不同而對被解釋變數產生不同的影響,就會使ui產生異方差性。

例如,以某一時間截面上不同收入家庭的資料為樣本,研究家庭對某一消費品(如服裝、食品等)的需求,設其模型為:

(5-1)

其中qi表示對某一消費品的需求量,ii為家庭收入,ui為隨機擾動項。ui包括除家庭收入外其他因素對qi的影響。如:

消費習慣、偏好、季節、氣候等因素,ui的方差就表示這些因素的影響可能使得qi偏離均值的程度。在氣候異常時,高收入家庭就會拿出較多的錢來購買衣服,而低收入的家庭購買衣服的支出就很有限,這時對於不同的收入水平ii,qi偏離均值的程度是不同的,var(ui) 常數,於是就存在異方差性了。

再比如,以某一時間截面上不同地區的資料為樣本,研究某行業的產出隨投入要素的變化而變化的關係,建立如下模型:

(5-2)

其中yi表示某行業的產出水平。li表示勞動力對產出的影響。ki表示資本對產出的影響,ui表示除勞動力和資本外其他因素對產出水平的影響,諸如地理位置、國家政策等。

顯然,對於不同的行業 ,這些因素對產出 的影響程度是不 同的,引起 偏離零均值的程度也是不同的,這就出現了異方差。

異方差性容易出現在截面資料中,這是因為在截面資料中通常涉及某一確定時點上的總體單位。比如個別的消費者及其家庭、不同行業或者農村、城鎮等區域的劃分,這些單位各自有不同的規模或水平,一般情況下用截面資料作樣本時出現異方差性的可能性較大。

2.測量誤差

測量誤差對異方差性的作用主要表現在兩個方面:一方面,測量誤差常常在一定時間內逐漸積累,誤差趨於增加,如解釋變數x越大,測量誤差就會趨於增大;另一方面,測量誤差可能隨時間變化而變化,如抽樣技術或收集資料方法的改進就會使測量誤差減少。所以測量誤差引起的異方差性一般都存在於時間序列中。

例如,研究某人在一定時期內學習打字時打字差錯數yt與練習打字時間xt之間的關係。顯然在打字練習中隨時間的增加,打字差錯數將減少,即隨著xt的增加yt將減小。這時var(ut)將隨xt的增加而減少,於是存在異方差性。

不僅在時間序列上容易出現異方差性,利用平均數作為樣本資料也容易出現異方差性。因為許多經濟變數之間的關係都服從正態分佈,例如不同收入組的人數隨收入的增加是正態分佈,即收入較高和較低的人是少數的,大部分人的收入居於較高和較低之間,在以不同收入組的人均資料作為樣本時,由於每組中的人數不同,觀測誤差也不同,一般來說,人數多的收入組的人均資料較人數少的收入組的人均資料具有較高的準確性,即var(ui)隨收入ii呈現先降後升的趨勢,這也存在著異方差性。

3.模型函式形式設定不正確

模型函式形式的設定誤差。如將指數曲線模型誤設成了線性模型,則誤差有增大的趨勢。

4.異常值的出現

隨機因素的影響,如政策變動、自然災害、金融危機、戰爭和季節等。

型別異方差一般可歸結為三種型別:

(1)單調遞增型:隨x的增大而增大,即在x與y的散點圖中,表現為隨著x值的增大y值的波動越來越大

(2)單調遞減型:隨x的增大而減小,即在x與y的散點圖中,表現為隨著x值的增大y值的波動越來越小

(3)複雜型:與x的變化呈複雜形式,即在x與y的散點圖中,表現為隨著x值的增大y值的波動複雜多變沒有系統關係。

檢驗存在的方法

事實也證明,實際經濟問題中經常會出現異方差性,這將影響回顧模型的估計、檢驗和應用。因此在建立計量經濟模型時應檢驗模型是否存在異方差性。關於異方差性檢驗的方法大致如下:

圖示檢驗法、goldfeld - quandt 檢驗法、white檢驗法、park檢驗法和gleiser檢驗法。

1)圖示檢驗法。①相關圖分析。方差為隨機變數的離散程度,通過觀察y和x的相關圖,可以觀察的離散程度和解釋變數之間的相關關係。

若隨x的增加,y的離散程度呈逐漸增加或減少的趨勢則表明模型存在著遞增或者遞減的異方差性。②殘差圖分析。通過對模型殘差分佈的觀察,如果分佈的離散程度有明顯擴大的趨勢,則表明存在異方差性。

圖示檢驗法只能較簡單粗略判斷模型是否存在著異方差性。

2)goldfeld - quandt 檢驗法。 將解釋變數排序,分成兩個部分利用樣本1 和樣本2 分別建立迴歸模型,並求出各自殘差平方 和,若誤差項的離散程度相同,則 和 的值大致相同,若兩者之間存在顯著差異,則表明存在差異性。為在檢驗過程中「誇大」差異性,在樣本中去掉c 個樣本資料(c= n/4),則構造f統計量

對於給定顯著水平,若,則表明模型存在異方差性,反之,則不存在。

3)懷特(white) 檢驗。white 檢驗是通過建立輔助迴歸模型的方法來判斷異方差性。假設迴歸模型為二元線性迴歸模型   則white 檢驗的步驟為:

估計迴歸模型,計算殘差;估計輔助迴歸模型: 即將殘差平方關於解釋變數的一次項,二次項和交叉乘積項進行迴歸;計算輔助迴歸模型的判斷係數,可以證明在同方差的假定下( ) ,其中q 為輔助迴歸模型中自變數的個數:給定顯著水平,若 ,則認為至少有一個不為0( ),存在異方差性。

4)帕克檢驗( park test ) 和格里瑟檢驗( glesger test)。通過建立殘差序列對解釋變數的輔助迴歸模型,判斷隨機項的誤差和解釋變數之間是否有較強的相關關係,以此來判斷模型是否存在異方差性。

park檢驗:或 ;

gleiser檢驗: h=±1,±2,±1/2,……,其中 是隨機誤差項,給定顯著水平,若

經檢驗其中的某個輔助迴歸方程是顯著的,則證明原模型存在異方差性。帕克檢驗和格里瑟檢驗可以判斷模型是否存在異方差,而且可以**模型異方差性的具體形式,這為後來解決異方差性打下基礎

後果在古典迴歸模型的假定下,普通最小二乘估計量是線性、無偏、有效估計量,即在所有無偏估量中,最小二乘估計量具有最小方差性——它是有效估計量。如果在其他假定不變的條件下,允許隨機擾動項ui存在異方差性,即ui的方差隨觀測值的變化而變化,這就違背了最小二乘法估計的高斯——馬爾柯夫假設,這時如果繼續使用最小二乘法對引數進行估計,就會產生以下後果:

1.引數估計量仍然是線性無偏的,但不是有效的

2.異方差模型中的方差不再具有最小方差性

3.t檢驗失去作用

4.模型的**作用遭到破壞

logistic迴歸,廣義線性模型

廣義線性模型 由四本介紹線性模型的小冊子組成,它們分別是 廣義線性模型導論 應用logistic迴歸分析 定序因變數的logistic迴歸模型 以及 logit與probit 次序模型和多類別模型 廣義線性模型 集中介紹了社會學研究分析方法中的一個非常有效且重要的資料分析方法,即線性模型。作者通過闡...

怎麼用spss 多元非線性迴歸模型

你首先得確定你的非線性模型是什麼?一般將非線性模型轉換為線性,再通過多元迴歸擬合就簡單了 天蠍小灰馬 使用步驟 分析 迴歸 線性迴歸 多元線性迴歸分析,把因變數放入因變數列表中,之後多個自變數放入自變數列表中,選擇變數篩選的方法 進入法 逐步法等 就可以了。spss statistical prod...

spss非線性迴歸模型表示式有哪幾種

千尋攝影美學館 沒效首先需要繪製散點圖散點圖依據經驗判斷模型能達佳能需要嘗試同模型找擬佳 用spss進行非線性迴歸時,模型表示式怎麼寫 呂秀才 這個確實比較複雜,一般根據經驗來確定,或者繪製一下散點圖看看符合什麼趨勢 然後才確定模型表示式 spss的非線性迴歸中,怎麼輸入下面的模型? 怪友 用sps...