若f關於點ab對稱則有什麼等式,若fx關於點 a,b 對稱,則有什麼等式?

時間 2021-08-11 18:12:29

1樓:忘記呼吸的貓

這個分有一次函式和二次函式兩種情況

若是一次函式的話,設一次函式的一般式為f(x)=ax+b,則一次函式過點(a,b)

若是二次函式的話,它的頂點橫座標就是a,

2樓:匿名使用者

若f(x)關於點(a,b)對稱,則有:

f(a-x)+f(a+x)=2b(或f(x)+f(2a-x)=2b).

如果函式f(x)的影象關於點p(x0,y0)對稱,

從幾何意義上說,f(x)的影象繞點p旋轉180度後能夠重合;

從代數意義上說,f(x)影象上任一點a1(x1,y1),

則a1關於p的對稱點a2(2x0-x1,2y0-y1)必在f(x)影象上.

反比例函式y=1/x影象關於原點對稱,(x1,y1)與(-x1,-y1)同在影象上.

函式y=(x-1)/(x-2)關於點(2,1)對稱,,點(x1,y1)與(4-x1,2-y1)同在影象上.

3樓:昨日

在f(x)上任取一點a(x,y),a點關於(a,b)的對稱點設為a'(x',y')則有a=(x+x')/2,b=(y+y')/2,由此可得出

x=2a-x',y=2b-y'代入f(x)的方程即可 y'=2b-f(2a-x')或g(x)=2b-f(2a-x)

4樓:123木頭人

f(a+x)+f(a-x)=2b

5樓:madein踹你

f(a+x)+f(a-x)=2b.最簡潔的了

若函式y=f(x)關於點(a,0)中心對稱,有關於x=b軸對稱,則函式f(x)必為周期函式,且週期t=4la-b|,

6樓:匿名使用者

關於(a,0)中心對稱,那麼f(a-x)=-f(a+x)【此處理解記憶可以將x看成橫座標到a的距離】

又關於x=b對稱,那麼有f(b-x)=f(b+x)把第一個等式左邊a-x換成x,那麼有f(x)=-f(a+a-x)=-f(2a-x)

同理第二個有f(x)=f(2b-x)

所以f(2b-x)=-f(2a-x)

再把2b-x看成x

那麼f(x)=-f(2a-2b+x)

再推一步(就是加一個2a-2b變一次正負)有f(x)=f(4a-4b+x)

所以週期是4|a-b|

若函式f (x)關於x=a對稱,也關於x=b對稱。證明f (x)是周期函式,並求出週期。 我覺得答

7樓:匿名使用者

函式y=f(x)的影象關於直線x=a對稱,等價於f(a+x)=f(a-x)。①

同理,函式y=f(x)的影象關於直線x=b對稱,等價於f(b+x)=f(b-x).②

a≠b,則

f(2a-2b+x)=f[a+(a-2b+x)]=f[a-(a-2b+x)](由①)

=f(2b-x)=f[b+(b-x)]=f[b-(b-x)](由②)=f(x),

所以f(x)是周期函式,2a-2b是它的週期。

8樓:一看數學就想睡

不會吧,這個答案一定是正確的。。。。。。。。。。。。。。。。。這麼清晰,還看不懂?

(高中數學)若f(x)既關於x=a對稱,又關於x=b對稱(a≠b) 則週期為2ⅰa-bⅰ 為什麼要

9樓:天空沒蜻

關於(a,0)中心對稱,那麼f(a-x)=-f(a+x)【此處理解記憶可以將x看成橫座標到a的距離】

又關於版x=b對稱,那麼有

權f(b-x)=f(b+x)

把第一個等式左邊a-x換成x,那麼有f(x)=-f(a+a-x)=-f(2a-x)

同理第二個有f(x)=f(2b-x)

所以f(2b-x)=-f(2a-x)

再把2b-x看成x

那麼f(x)=-f(2a-2b+x)

再推一步(就是加一個2a-2b變一次正負)有f(x)=f(4a-4b+x)

所以週期是4|a-b|

10樓:exo不偷井蓋

2、f(x)關於(

baib,0)中心對稱,所du

以f(x)+f(2b-x)=2*0=0(1) f(x)關於x=b軸對稱,所以f(x)=f(2a-x)(2) 將zhix用2b-x代入(dao1)得

版 f(2a-x)+f[2b-(2a-x)]=0(3) 根據(1)(權2)(3) 得到f(2b-x)=f(2b-2a+x)(4) 由將x用x+2b代入(4)得到 f(-x)=f(4b-2a+x) 由(2)可得f(-x)=f(2a+x) 所以f(2a+x)=f(4b-2a+x) 將x用x-2a代入上式 得到f(x)=f(4b-2a+x-2a)=f[x-(4a-4b)] 所以f(x)是一個以4a-4b為週期的函式

11樓:匿名使用者

因為存在兩種可能。

當a>b時,當然不用加括號了

當a

12樓:愛永遠都沒完

我們提到週期一般說的是正週期,而a,b大小不確定,所以加絕對值。

13樓:至尊道無

a與b的大小不定,則a-b可能為負

14樓:竹枝一根

我是學渣,不懂這些天神才做得來的東西呀!

15樓:匿名使用者

那麼f(x)=-f(2a-2b+x)

若函式y=f(x+b)是偶函式,則函式y=fx關於點(b,0)中心對稱,是因為f(-x)=-f(x)嗎

16樓:我不是他舅

是奇函式吧

y=f(x+b)是奇函式

則對稱中心是原點

而吧f(x+b)向右移b個單位

是f[(x-b)+b]=f(x)

則對稱中心也是向右移b個單位

所以f(x)的對稱中心是(b,0)

17樓:happy春回大地

不對是因為 f(x+b)=f(-x+b)

已知A 3, 2 關於B的對稱點 7,6 ,則B對A對稱點

解 中點座標公式 有兩點 a x1,y1 b x2,y2 則它們的中點p的座標為 x1 x2 2,y1 y2 2 設b x,y 幾何解釋可以理解為ab兩點關於p點對稱。由a 3,2 關於b的對稱點 7,6 得2x 3 7 2y 2 6 於是x 5,y 2 則b 5,2 設b 5,2 關於a 3,2 ...

若a b大於0,ab小於0,則必有

守厚星燕燕 若a b大於0,ab小於0,則必有 a小於0,b大於0,a 小於 b 或者,a大於0,b小於0,a 大於 b 不等式就是用大於,小於,大於等於,小於等於連線而成的數學式子,它一般有如下八個基本性質 如果x y,那麼yy 對稱性 如果x y,y z 那麼x z 傳遞性 如果x y,而z為任...

若正數a,b滿足ab a b 3,則ab的取值範圍是

解答 因為a b 2 根ab 所以 ab 2 根ab 3,令t 根ab,則 t 2 2t 3 t 2 2t 3 0,解得t 3,所以ab 9。即ab的取值範圍是 9,無窮大 大肥羊老師 由於a b 2根號ab,所以ab 3 2根號ab,設根號ab為x,則 x 2 2x 3 0,解的 x 3或x 1....