1樓:百度文庫精選
內容來自使用者:專門找數學題
教育學院招生考試專升本模擬試題數學試題(一)
一、選擇題:本大題共10個小題,每小題4分,共40分。在每小題給出的四個選項中,只有一項是符合題目要求的,把所選項前的字母填在題後的括號內。
1.當時,下列函式中不是無窮小量的是()
a.b.c.d.2.設函式,則等於()
a.-3b.-1c. 0d.不存在
3.設函式,則等於()a.b.
c.d.4.設函式在內可導,且,則等於()
a.b.c.d.
5.設函式,則等於()a. 0b.c.d.
6.設的一個原函式為,則等於()a.b.c.d.
7.設函式在點處的切線斜率為,則該曲線過點(1,0)的方程為()a.b.c.d.8.若,則()a.b.c.d.
9.設函式,則等於()a.b.c.d.
10.設100件產品中有次品4件,從中任取5件的不可能事件是()a.“5件都是**”b.“5件都是次品”c.“至少有一件是次品”d.“至少有一件是**”
二、填空題:本大題共10個小題,每小題4分,共40分,把答案填在題中橫線上。
11.設函式在處連續,則.
12..
13.設函式,則.
14.設函式,則.
15.設函式,則.
16..
17.設函式,則.
18..
19.設,則.
20.由曲線和圍成的平面圖形的面積.
三、解答題:本大題共8個小題,共70分。解答應寫出推理、演算步驟。
21.(本題滿分8分)計算.
22.(本題滿分8分)設函式,求.
23.(本題滿分8分)計算a.(18.
2樓:匿名使用者
lim(x->+∞) f(x) ->+∞ , lim(x->+∞) g(x) ->+∞
=>lim(x->+∞) [f(x)+g(x)] ->+∞
高數極限題
3樓:匿名使用者
lim(x->+∞) f(x) ->+∞ , lim(x->+∞) g(x) ->+∞
=>lim(x->+∞) [f(x)+g(x)] ->+∞
4樓:寇遠孝沛柔
解:-b=lim(x→0)(sin3x+ax)/x^bai3,“du0/0”型
zhi,用洛比塔dao
法則回,-b=lim(x→答0)(3cos3x+a)/(3x^2)。當x→0時,3x^2→0,故3cos3x+a→0。∴a=-3。
,-b=lim(x→0)(cos3x-1)/(x^2),仍屬“0/0”型,再用洛比塔法則,-b=lim(x→0)[-3sin3x/(2x)]=-9/2。∴b=9/2,a=-3。供參考。
求極限(高數題目)?
5樓:匿名使用者
lim(x->∞) [√(x^2-x+1) -ax-b ] =0
lim(x->∞) [√(x^2-x+1) -(ax+b) ] =0
lim(x->∞) [(x^2-x+1) -(ax+b)^2 ]/[√(x^2-x+1) +(ax+b) ] =0
lim(x->∞) [(1-a^2)x^2+(-1-2ab)x +(1-b^2) ]/[√(x^2-x+1) +(ax+b) ] =0
=>1-a^2 =0
a=1 or -1( rej)
a=1lim(x->∞) [(1-a^2)x^2+(-1-2ab)x +(1-b^2) ]/[√(x^2-x+1) +(ax+b) ] =0
lim(x->∞) [ (-1-2b)x +(1-b^2) ]/[√(x^2-x+1) +(x+b) ] =0
分子分母同時除以 x
lim(x->∞) [ (-1-2b) +(1-b^2)/x ]/[√(1-1/x+1/x^2) +(1+b/x) ] =0
-1-2b =0
b=-1/2
ie(a, b)= (1, -1/2)
6樓:小茗姐姐
①利用平方差公式,分子有理化
②分子為常表,分母∞
③求出ab如下圖
7樓:
這個題是求a,b的值,可以根據題意求出a,然後後面替換用洛必達法則求b。
高數求極限題,高數一道求極限的題目
要利用到兩次等價無窮小的替換,如果你沒有把那些個替換公式背下來,那麼求 極限的題目就是你的死穴 樓上的回答顯然有問題 加減法的時候,不能那麼著急用等價無窮小 首先x趨於無窮大,那麼1 x趨於0 分母x ln 1 1 x 等價於x 1 x即x使用洛必達法則,分子分母同時求導 那麼極限值 lim x趨於...
高數求極限,怎麼求這題,高數極限這題怎麼求?
我來寫一寫,對原式取對數 lim n 1 n ln a n n b n n lim n 1 n ln na n b n lim n 2 n lnn 令n x 1 x ln xa x b x lim x 2 x lnx 對減號後面部分的式子使用洛必達,結果極限為零 lim x ln xa x b x ...
一道高數極限題求答案解釋,一道高數極限題目,求詳細解釋,急,線上等
pasirris白沙 考試最怕的就是這類題!不是怕在這類題有多難,而是出題教師的語言敘述含混不清,層次不明!聽課也最怕 最恨 最討厭這類教師!每句話都是含含糊糊,每個概念都是拖泥帶水,越學越累!對本題的剖析 1 本題的題意無非就是想考 單調有界的序列,必有極限,也就是收斂。2 單調 有界,合二為一時...