1樓:匿名使用者
標準型即除對角線元素外其餘元素都為0
化簡方式的不同視具體情況具體討論
一般求線性方程組的時候要化成標準型求解
2樓:碧落仙兒
1 階梯形 一般解低階方程
2 最簡形 解題中關於許多向量要用一組基向量表示時。
注意與一區別,如果只要求一個向量用一組基表示則等同於階梯型解題,即非齊次線性方程。向量組的話則用最簡形算。
3 標準型 是要求一個矩陣對角化時候。求特徵值,看是否相似啊什麼的。內容相對豐富。
3樓:爛雲一團
.........不是應化為什麼形,是能化為什麼型
所有矩陣都可以化為階梯型、最簡型,在求線形方程組的解時要把矩陣化為階梯型以求解,至於最簡型就沒必要了。只有方陣才能化為標準型,標準型就是對角陣即除對角線元素外其餘元素都為0,求對角陣就是求方陣的特徵值
我建議你買本李永樂的書,就是金榜系列的線形代數輔導講義看看,線代很簡單,稍微學學就通了,象你說的這幾個型,你看課本上說的複雜,其實沒什麼用,都不會考到
4樓:佟鈺塞職
看是否相似啊什麼的。
注意與一區別。向量組的話則用最簡形算,如果只要求一個向量用一組基表示則等同於階梯型解題。求特徵值,即非齊次線性方程。
3標準型
是要求一個矩陣對角化時候。內容相對豐富1
階梯形一般解低階方程
2最簡形
解題中關於許多向量要用一組基向量表示時
5樓:戰譽宇綸
矩陣為了求逆矩陣需要化為最簡形矩陣,例如(a,e)=(e,a-1)等。階梯形一般是為了求矩陣的秩。
矩陣的標準形一般有3種:
1.梯矩陣
2.行簡化梯矩陣(或稱為行最簡形)
3.等價標準形
線性代數中矩陣初等行變換時什麼時候應化為階梯形,什麼時候化為最簡形矩陣? 什麼是標準型?
6樓:匿名使用者
矩陣為了求逆矩陣需要化為最簡形矩陣,例如(a,e)=(e,a-1)等。階梯形一般是為了求矩陣的秩。
矩陣的標準形一般有3種:
1.梯矩陣
2.行簡化梯矩陣(或稱為行最簡形)
3.等價標準形
線性代數中矩陣初等行變換時什麼時候應化為階梯形,什麼時候化為最簡形,什麼時候化為單位矩陣?
7樓:匿名使用者
1. 化為階梯形
bai:
判斷方程
du組的解的存在性
求向量zhi組的極大無dao關組
2. 化最簡形:
方程組有解回時, 求出方答程組的全部解
求出向量組的極大無關組, 且要求將其餘向量由極大無關組線性表示3. 化單位矩陣
解矩陣方程 ax=b 時, 需把 (a,b) 的左塊化成單位矩陣.
暫時想到這些
最簡階梯形矩陣,和標準形矩陣,有沒有區別???還有化為標準形只通過行變化就可以了? 30
8樓:匿名使用者
區別是肯定有的,完全兩個概念。。。標準型是針對二次型才有的概念,只通過行變化是不可能化為標準型的。。對一個對稱矩陣,經過相應的行變換和列變換(注意是相同)可以轉化成一個對角矩陣,這個對角矩陣就是標準型。。。
值得注意的是標準型不唯一(即不具有唯一性)
線性代數的初等變換,化成行階梯形,是否只能用行變換…
9樓:匿名使用者
化成行階梯型一般是用來判別秩以及求解基礎解系和特徵向量,只能是用行變換。
10樓:匿名使用者
若題目讓化行階梯或行最簡形, 則只能用初等行變換其他則要看具體情況
求秩或等價標準形可行列變換混用
求極大無關組,解線性方程組只能用行變換
求矩陣的特徵向量的時候,將特徵值代入求解,需要把矩陣化成行最簡形嗎?還是行階梯就可以?
11樓:賀零傾飣劍戈弚
最好化成行最簡形,因為你寫特徵向量的時候,就不用化簡了,不然,需要稍微化簡一下。
線性代數什麼叫行最簡階梯型
12樓:匿名使用者
化成階梯後,非0行的首個非0元素為1,與這些1同列的元素都為0
關於線性代數中矩陣的初等變換及逆矩陣
上面的p i k 或者p i,j k 不是只可以表示行變換或者是列變換,行變換也有p i,j k 列變換也有p i k 的,他們表示的意思就是。p i k 如果是初等行變換,那麼就是說第i行乘以常數k,如果說是列變換,那麼就是說第i列乘以常數k p i,j k 如果是初等行變換,那麼就是說第j行的k...
線性代數矩陣用初等變換做謝謝了,線性代數矩陣初等變換
顯然,代數餘子式 a i 1 其中i表示單位矩陣 a a a n 0 因為子矩陣的第一列全為0 a 1 2 2 a 2 a a a n 0 因為子矩陣是對角陣,而且子矩陣第2行第2列元素為0,行列式為0 a 0 因為子矩陣前2列元素分別相等,行列式為0 a 1 2 2 a 2 a a n 0 因為子...
線性代數 ABB A嗎,線性代數中矩陣乘積,A B什麼時候可以也可以寫成B A?
疏佩玉之典 這個公式是成立的,左邊 ab 乘以 ab 等於 ab e,右邊b a 乘以ab等於 a b e ab e,左邊等於右邊,這裡用到一個性質,a 乘以a a e 此外,矩陣又上肩上的符號,t,1,他們的性質是類似的 臧浩涆玄戈 設a aji nn,b bji nn,c ab,ab cji n...