1樓:溫珹訾暖
因為等比數列公式an=a1q^(n-1)
sn=a1+a1q+a1q^2+a1q^3+...+a1q^(n-2)+a1q^(n-1)
(1)q*sn=a1q+a1q^2+a1q^3+...+a1q^(n-2)+a1q^(n-1)+a1q^n
(2)(1)-(2)
得到(1-q)sn=a1-a1q^n
所以求和公式sn=a1(1-q^n)/(1-q)
2樓:匿名使用者
設等比數列{an}的公比為q,前n項和為snsn=a1+a2+a3+……+a(n-1)+an=a1+a1*q+a1*q^2+……+a1*q^(n-2)+a1*q^(n-1)
等式兩邊乘以公比q
q*sn=a1*q+a1*q^2+a1*q^3+……+a1*q^(n-1)+a1*q^n
兩式相減
sn-q*sn
=a1+(a1*q-a1*q)+(a1*q^2-a1*q^2)+……+[a1*q^(n-1)-a1*q^(n-1)]-a1*q^n
=a1-a1*q^n
即(1-q)*sn=a1*(1-q^n)
得sn=a1*(1-q^n)/(1-q)
3樓:匿名使用者
等比數列求和公式推導 (1)sn=a1+a2+a3+...+an(公比為q)
(2)q*sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)
(3)sn-q*sn=a1-a(n+1)
(4)(1-q)sn=a1-a1*q^n
(5)sn=(a1-a1*q^n)/(1-q)(6)sn=(a1-an*q)/(1-q)(7)sn=a1(1-q^n)/(1-q)(8)sn=k*(1-q^n)~y=k*(1-a^x)
4樓:匿名使用者
sn=a1+a2+……+an
q*sn=a1*q+a2*q+……+an*q=a2+a3+……+a(n+1)
sn-q*sn=a1-a(n+1)=a1-a1*q^n(1-q)*sn=a1*(1-q^n)
sn=a1*(1-q^n)/(1-q)
等比數列求和公式推導 至少給出3種方法
5樓:考試加油站
一、等比數列求和公式推導
由等比數列定義
a2=a1*q
a3=a2*q
a(n-1)=a(n-2)*q
an=a(n-1)*q 共n-1個等式兩邊分別相加得
a2+a3+...+an=[a1+a2+...+a(n-1)]*q
即 sn-a1=(sn-an)*q,即(1-q)sn=a1-an*q
當q≠1時,sn=(a1-an*q)/(1-q) (n≥2)
當n=1時也成立.
當q=1時sn=n*a1
所以sn= n*a1(q=1) ;(a1-an*q)/(1-q) (q≠1)。
二、等比數列求和公式推導
錯位相減法
sn=a1+a2 +a3 +...+an
sn*q= a1*q+a2*q+...+a(n-1)*q+an*q= a2 +a3 +...+an+an*q
以上兩式相減得(1-q)*sn=a1-an*q
三、等比數列求和公式推導
數學歸納法
證明:(1)當n=1時,左邊=a1,右邊=a1·q0=a1,等式成立;
(2)假設當n=k(k≥1,k∈n*)時,等式成立,即ak=a1qk-1;
當n=k+1時,ak+1=ak·q=a1qk=a1·q(k+1)-1;
這就是說,當n=k+1時,等式也成立;
由(1)(2)可以判斷,等式對一切n∈n*都成立。
6樓:匿名使用者
一般都是用錯位相消
sn=a1+a2+a3+...+an(公比為q)q*sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)
sn-q*sn=a1-a(n+1)
(1-q)sn=a1-a1*q^n
sn=(a1-a1*q^n)/(1-q)
sn=(a1-an*q)/(1-q)
sn=a1(1-q^n)/(1-q)
sn=k*(1-q^n)~y=k*(1-a^x)
7樓:白白
你好,過程如下
第一種:作差法
sn=a1+a2+a3+...+an(公比為q)q*sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)
sn-q*sn=a1-a(n+1)
(1-q)sn=a1-a1*q^n
sn=(a1-a1*q^n)/(1-q)
sn=(a1-an*q)/(1-q)
sn=a1(1-q^n)/(1-q)
還有兩種方法暫時 忘了,,我幫你想想。。
8樓:匿名使用者
首項a1,公比q
a(n+1)=an*q=a1*q^(n
sn=a1+a2+..+an
q*sn=a2+a3+...+a(n+1)qsn-sn=a(n+1)-a1
s=a1(q^n-1)/(q-1)
希望你能滿意!
等比數列的求和公式和推導
9樓:
因為等比數列公式an=a1q^(n-1)
sn=a1+a1q+a1q^2+a1q^3+...+a1q^(n-2)+a1q^(n-1) (1)
q*sn=a1q+a1q^2+a1q^3+...+a1q^(n-2)+a1q^(n-1)+a1q^n (2)
(1)-(2)
得到(1-q)sn=a1-a1q^n
所以求和公式sn=a1(1-q^n)/(1-q)
10樓:郗晚竹長衣
我來說明一下等比數列的求和公式推導過程,看樓主有沒有不明白的地方。
設等比數列{an}的公比為q,前n項和為sn
sn=a1+a2+a3+……+a(n-1)+an
=a1+a1*q+a1*q^2+……+a1*q^(n-2)+a1*q^(n-1)
等式兩邊乘以公比q
q*sn=a1*q+a1*q^2+a1*q^3+……+a1*q^(n-1)+a1*q^n
兩式相減
sn-q*sn
=a1+(a1*q-a1*q)+(a1*q^2-a1*q^2)+……+[a1*q^(n-1)-a1*q^(n-1)]-a1*q^n
=a1-a1*q^n
即(1-q)*sn=a1*(1-q^n)
得sn=a1*(1-q^n)/(1-q)
具體到樓主的題目
f=100*[1+(1+0.06)^3+(1+0.06)^2+(1+0.06)]
=100*[(1+0.06)^0+(1+0.06)^1+(1+0.06)^2+(1+0.06)^3]
可以看出中括號內是首項為1、公比為1+0.06的等比數列前4項求和
套用上面的公式,a1=1,q=1+0.06,n=4,可得
f=100*
=100*[(1+0.06)^4-1]/0.06
所以樓主的那個公式是正確的。
11樓:聽那聲音
求和公式
等比數列求和公式 sn=n×a1 (q=1)sn=a1(1-q^n)/(1-q) =(a1-an*q)/(1-q) (q≠1)
s∞=a1/(1-q) (n-> ∞)(|q|<1)(q為公比,n為項數)
等比數列求和公式推導
sn=a1+a2+a3+...+an(公比為q)q*sn=a1*q+a2*q+a3*q+...+an*q=a2+a3+a4+...+a(n+1)
sn-q*sn=a1-a(n+1)
(1-q)sn=a1-a1*q^n
sn=(a1-a1*q^n)/(1-q)
sn=(a1-an*q)/(1-q)
sn=a1(1-q^n)/(1-q)
sn=k*(1-q^n)~y=k*(1-a^x)
等比數列求和,等比數列求和公式推導 至少給出3種方法
等比數列求和公式 sn n a1 q 1 sn a1 1 q n 1 q a1 an q 1 q q 1 q為比值,n為項數 分析 要求sn,首先要求出該數列的通項公式,an實際上可以看成一個首項為1,公比為3的等比數列的前n項和,先利用等比數列的求和公式求出an的通項公式再進行求和。等比數列前n項...
有關等比數列求和公式是怎麼推匯出來的
等比數列a1 a a2 aq a3 aq 2 a4 aq 3 an aq n 1 等比數列和s a1 a2 a3 a4 an a aq aq 2 aq 3 aq n 1 將等式兩邊都乘以q後有 qs aq aq 2 aq 3 aq n 1 aq n 以上兩式相減得 1 q s a aq n a 1 ...
等比數列是什麼?如何求和
涼涼看社會 1 等比數列是指從第二項起,每一項與它的前一項的比值等於同一個常數的一種數列。舉例 數列 2 4 8 16 每一項與前一項的比值 4 2 8 4 16 8 2,所以這個數列是等比數列,而它的公比就是2。2 等比數列的求和公示如下 其中a1為首項,q為等比數列公比,sn為等比數列前n項和。...