1樓:為午夜陽光
一、因式分解的基本方法,
1、提取公因式法,
2、公式法(平方差公式和完全平方公式)。
往往在題目中多少會涉及一些其他的知識,例如配方法和十字交叉法等。
二、十字交叉法
1、十字相乘法的方法:十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數.
如圖所示:
2、十字相乘法的用處:(1)用十字相乘法來分解因式.(2)用十字相乘法來解一元二次方程.
3、十字相乘法的優點:用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯.
4、十字相乘法的缺陷:1、有些題目用十字相乘法來解比較簡單,但並不是每一道題用十字相乘法來解都簡單.2、十字相乘法只適用於二次三項式型別的題目.3、十字相乘法比較難學.
5、十字相乘法解題例項:
1)、 用十字相乘法解一些簡單常見的題目
例1:把m²+4m-12分解因式
分析:本題中常數項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題 。
因為 :1 ↖ ↗ - 2
1 6
所以m²+4m-12=(m-2)(m+6)
例2:把5x²+6x-8分解因式 。
分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1.當二次項係數分為1×5,常數項分為-4×2時,才符合本題 。
因為: 1 ↖ ↗ -2
5 -4
所以5x²+6x-8=(x+2)(5x-4)
例3:解方程x²-8x+15=0
分析:把x²-8x+15看成關於x的一個二次三項式,則15可分成1×15,3×5.
因為 :1 ↖ ↗ -3
1 - 5
所以原方程可變形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一個關於x的二次三項式,則6可以分為1×6,2×3,-25可以分成-1×25,-5×5,-25×1.
因為 : 2 ↖ ↗ -5
3 5
所以 原方程可變形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比較難的題目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一個關於x的二次三項式,則14可分為1×14,2×7,18y²可分為y.18y ,2y.9y ,3y.6y
因為 :2x ↖ ↗ -9y
7x -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本題中,要把這個多項式整理成二次三項式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
說明:在本題中先把28y²-25y+3用十字相乘法分解為(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解為[2x -(7y -1)][5x +(4y -3)]
2樓:匿名使用者
1、十字相乘法的方法:十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數。
2、十字相乘法的用處:(1)用十字相乘法來分解因式。(2)用十字相乘法來解一元二次方程。
3、十字相乘法的優點:用十字相乘法來解題的速度比較快,能夠節約時間,而且運用算量不大,不容易出錯。
例如:例1把m²+4m-12分解因式
分析:本題中常數項-12可以分為-1×12,-2×6,-3×4,-4×3,-6×2,-12×1當-12分成-2×6時,才符合本題
解:因為 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本題中的5可分為1×5,-8可分為-1×8,-2×4,-4×2,-8×1。當二次項係數分為1×5,常數項分為-4×2時,才符合本題
解: 因為 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成關於x的一個二次三項式,則15可分成1×15,3×5。
解: 因為 1 -3
1 ╳ -5
所以原方程可變形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一個關於x的二次三項式,則6可以分為1×6,2×3,-25可以分成-1×25,-5×5,-25×1。
解: 因為 2 -5
3 ╳ 5
所以 原方程可變形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
3樓:時尚穿搭小將
十字交叉法,理解透了,其實並不難
4樓:比
十字交叉法:十字左邊相乘等於二次項係數,右邊相乘等於常數項,交叉相乘再相加等於一次項係數.
如以下形式:x²+(p+q)+pq=(x+p)(x+q)例子:m²+4m-12=(m-2)(m+6)5x²+6x-8=(x+2)(5x-4)
方法:因式分解主要有十字相乘法,待定係數法,雙十字相乘法,對稱多項式,輪換對稱多項式法,餘式定理法等方法,求根公因式分解沒有普遍適用的方法,初中數學教材中主要介紹了提公因式法、運用公式法、分組分解法。而在競賽上,又有拆項和添減項法式法,換元法,長除法,短除法,除法等。
5樓:藍色珠寶
很簡單的說
例:2x^2+12x+18 2x^2的係數為2=2×1或-2×-1
常數18可分解為3×6或-6×-3……
1 3 嘗試使1×6+2×3=12(交叉相乘)2 6
當因式分解時,係數按橫向寫:=(x+3)(2x+6)
6樓:匿名使用者
急求怎樣用十字交叉法因式分解
例如:分解因式:6x^2-5x+1
原式=(1-2x)(1-3x)
方法是-2x 1
拆成 -3x 1
對應 6x^2 +1
所乘積的和等於一次項。
7樓:葉孤以彤
www.qmmeo.com
如何因式分解?如何因式分解呢?
x n 1因式分解是 x n 1 x 1 1 x x 2 x n 2 x n 1 因式分解與解高次方程有密切的關係。對於一元一次方程和一元二次方程,初中已有相對固定和容易的方法。分解方法 1 因式分解主要有十字相乘法,待定係數法,雙十字相乘法,對稱多項式,輪換對稱多項式法,餘式定理法等方法,求根公因...
因式分解的問題?因式分解的問題?
方法如下,請作參考 這個跟一般的作除法是一樣,被除數和除數都按照未知數的降冪書寫,然後被除數最高次除以除數的最高次作為商,依次進行。如下圖 通過湊齊最高冪次的項,再相減,一級一級運算下來,從而完成因式分解。把一個多項式在一個範圍 如實數範圍內分解,即所有項均為實數 化為幾個整式的積的形式。可以繼續除...
因式分解相乘待定係數法,因式分解 十字相乘 待定係數法
春風化雨時 把一個多項式在一個範圍 如有理數範圍內分解,即所有項均為有理數 化為幾個最簡整式的積的形式,這種變形叫做因式分解,也叫作分解因式。在數學求根作圖方面有很廣泛的應用。十字相乘一般指十字相乘法 十字分解法的方法簡單來講就是 十字左邊相乘等於二次項,右邊相乘等於常數項,交叉相乘再相加等於一次項...