二次函式中影象與係數的關係,影象的性質以及影象的平移。知識點

時間 2021-09-13 14:28:10

1樓:匿名使用者

二次函式

i.定義與定義表示式

一般地,自變數x和因變數y之間存在如下關係:

y=ax^2+bx+c(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,iai還可以決定開口大小,iai越大開口就越小,iai越小開口就越大.)

則稱y為x的二次函式。

二次函式表示式的右邊通常為二次三項式。

ii.二次函式的三種表示式

一般式:y=ax^2;+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)^2;+k [拋物線的頂點p(h,k)]

交點式:y=a(x-x1)(x-x2) [僅限於與x軸有交點a(x1,0)和 b(x2,0)的拋物線]

注:在3種形式的互相轉化中,有如下關係:

h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a

iii.二次函式的影象

在平面直角座標系中作出二次函式y=x²的影象,

可以看出,二次函式的影象是一條拋物線。

iv.拋物線的性質

1.拋物線是軸對稱圖形。對稱軸為直線

x = -b/2a。

對稱軸與拋物線唯一的交點為拋物線的頂點p。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點p,座標為

p [ -b/2a ,(4ac-b^2;)/4a ]。

當-b/2a=0時,p在y軸上;當δ= b^2-4ac=0時,p在x軸上。

3.二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項係數b和二次項係數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6.拋物線與x軸交點個數

δ= b^2-4ac>0時,拋物線與x軸有2個交點。

δ= b^2-4ac=0時,拋物線與x軸有1個交點。

δ= b^2-4ac<0時,拋物線與x軸沒有交點。

v.二次函式與一元二次方程

特別地,二次函式(以下稱函式)y=ax^2;+bx+c,

當y=0時,二次函式為關於x的一元二次方程(以下稱方程),

即ax^2;+bx+c=0

此時,函式影象與x軸有無交點即方程有無實數根。

函式與x軸交點的橫座標即為方程的根。

答案補充

畫拋物線y=ax2時,應先列表,再描點,最後連線。列表選取自變數x值時常以0為中心,選取便於計算、描點的整數值,描點連線時一定要用光滑曲線連線,並注意變化趨勢。

二次函式解析式的幾種形式

(1)一般式:y=ax2+bx+c (a,b,c為常數,a≠0).

(2)頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0).

(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點的橫座標,即一元二次方程ax2+bx+c=0的兩個根,a≠0.

說明:(1)任何一個二次函式通過配方都可以化為頂點式y=a(x-h)2+k,拋物線的頂點座標是(h,k),h=0時,拋物線y=ax2+k的頂點在y軸上;當k=0時,拋物線a(x-h)2的頂點在x軸上;當h=0且k=0時,拋物線y=ax2的頂點在原點

答案補充

如果影象經過原點,並且對稱軸是y軸,則設y=ax^2;如果對稱軸是y軸,但不過原點,則設y=ax^2+k

2樓:

定義與定義表示式

一般地,自變數x和因變數y之間存在如下關係:

y=ax^2+bx+c

(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。iai還可以決定開口大小,iai越大開口就越小,iai越小開口就越大。)

則稱y為x的二次函式。

二次函式表示式的右邊通常為二次三項式。

x是自變數,y是x的函式

二次函式的三種表示式

①一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

②頂點式[拋物線的頂點 p(h,k) ]:y=a(x-h)^2+k

③交點式[僅限於與x軸有交點 a(x1,0) 和 b(x2,0) 的拋物線]:y=a(x-x1)(x-x2)

以上3種形式可進行如下轉化:

①一般式和頂點式的關係

對於二次函式y=ax^2+bx+c,其頂點座標為(-b/2a,(4ac-b^2)/4a),即

h=-b/2a=(x1+x2)/2

k=(4ac-b^2)/4a

②一般式和交點式的關係

x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式)

二次函式係數與影象的關係

3樓:匿名使用者

首先看二次項係數,正則開口向上,負則開口向下。其次看判別係數,b平方減4ac,小於零與x軸無交點,等於零與x軸有一個交點(相切),大於零有兩個交點。

4樓:匿名使用者

二次項係數為正,開口向上,二次項係數為負,開口向下。-a/b是對稱軸的位置。

5樓:百度文庫精選

內容來自使用者:化學書屋

12.a. 420.24.a. a. 2

6樓:楓風貝樂

二次函式

i.定義與定義表示式

一般地,自變數x和因變數y之間存在如下關係:

y=ax^2+bx+c(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,iai還可以決定開口大小,iai越大開口就越小,iai越小開口就越大.)

則稱y為x的二次函式。

二次函式表示式的右邊通常為二次三項式。

ii.二次函式的三種表示式

一般式:y=ax^2;+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x-h)^2;+k [拋物線的頂點p(h,k)]

交點式:y=a(x-x1)(x-x2) [僅限於與x軸有交點a(x1,0)和 b(x2,0)的拋物線]

注:在3種形式的互相轉化中,有如下關係:

h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a

iii.二次函式的影象

在平面直角座標系中作出二次函式y=x²的影象,

可以看出,二次函式的影象是一條拋物線。

iv.拋物線的性質

1.拋物線是軸對稱圖形。對稱軸為直線

x = -b/2a。

對稱軸與拋物線唯一的交點為拋物線的頂點p。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2.拋物線有一個頂點p,座標為

p [ -b/2a ,(4ac-b^2;)/4a ]。

當-b/2a=0時,p在y軸上;當δ= b^2-4ac=0時,p在x軸上。

3.二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4.一次項係數b和二次項係數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6.拋物線與x軸交點個數

δ= b^2-4ac>0時,拋物線與x軸有2個交點。

δ= b^2-4ac=0時,拋物線與x軸有1個交點。

δ= b^2-4ac<0時,拋物線與x軸沒有交點。

v.二次函式與一元二次方程

特別地,二次函式(以下稱函式)y=ax^2;+bx+c,

當y=0時,二次函式為關於x的一元二次方程(以下稱方程),

即ax^2;+bx+c=0

此時,函式影象與x軸有無交點即方程有無實數根。

二次函式解析式的幾種形式

(1)一般式:y=ax2+bx+c (a,b,c為常數,a≠0).

(2)頂點式:y=a(x-h)2+k(a,h,k為常數,a≠0).

(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的交點的橫座標,即一元二次方程ax2+bx+c=0的兩個根,a≠0.

說明:(1)任何一個二次函式通過配方都可以化為頂點式y=a(x-h)2+k,拋物線的頂點座標是(h,k),h=0時,拋物線y=ax2+k的頂點在y軸上;當k=0時,拋物線a(x-h)2的頂點在x軸上;當h=0且k=0時,拋物線y=ax2的頂點在原點

如果影象經過原點,並且對稱軸是y軸,則設y=ax^2;如果對稱軸是y軸,但不過原點,則設y=ax^2+k

三次函式影象與係數有什麼關係?是否存在與二次函式影象與係數類似的關係?

7樓:麻霞輝唐伯

存在的!(-b除以3a,?)這個座標就是三次函式的對稱中心!a是三次方係數,b是二次方係數~問號值很複雜可以用方程式算~有探索精神很好~祝數學成績進步!

怎麼畫二次函式影象,二次函式影象怎麼畫

來自滴水洞單純的銀柳 二次函式的影象就是一條拋物線,y ax bx c,a決定開口方向,再求出它的頂點 與x軸y軸的交點,可大致畫出它的影象。 盈赫 五點法五點草圖法又被叫做五點作圖法是二次函式中一種常用的作圖方法。註明 雖說是草圖,但畫出來絕不是草圖。五點草圖法中的五個點都是極其重要的五個點,分別...

關於一次函式影象和二次函式影象相切的問題

1 聯立y x b與y x 2 bx c x b x 2 bx c x 2 b 1 x c b 0 又 f 1 0,代入f x x 2 bx c,得b c x 2 b 1 x 2b 0 該一次函式影象和二次函式影象相切 兩影象只有一個公共點 0,即 b 1 2 8b 0 b1 3 2 根號 2,b2...

二次函式影象經過(0, 10112,4三

吉祿學閣 幫你提供思路 二次函式經過三個點,而二次函式的一般表示式為y ax 2 bx c,把這三個點代入到其一般表示式中,得到三個關於a,b,c的方程組,解之得到a,b,c的值,即可得到二次函式的表示式。 果果笑笑淺淺 1 因為經過 0,10 在y軸上的交點座標設 二次函式為y ax 2 bx 1...