1樓:尋情記丶
1:由與x軸焦點間距為π/2 可知週期t=π 即2π/w=π 得w=2·
根據最低點知 最小值為-2 即a=2(a>0) ·還有sin(2x+fai)在x=2π/3時取最小值-1即
2*2π/3+fai=2kπ+3π/2 k為整數 又由fai的範圍可得fai=π/6
所以f(x)=2sin(2x+π/6)
2: x屬於【π/12,π/2】得(2x+π/6)屬於【π/3,7π/6】
根據sinx函式圖象可得此時sin(2x+π/6)屬於【-1/2,1】
所以f(x)屬於【-1,2】
應該沒錯吧·(*^__^*) · 以後有什麼問題還可以問我· 其實我一直想做個數學家教·這樣你還可以免費請個數學家教哦·呵呵·
2樓:匿名使用者
1)由相鄰兩個交點間距離為π/2可以知道,函式週期為π, w=2最低點y值為-2,所以a=2
f(x)=2sin(2x+fai)在x=2π/3上取最小值,所以2*2π/3 +fai = kπ +3π/2
fai= kπ+π/6,所以k=0, fai=π/6f(x)=2sin(2x+π/6)
2) 根據三角函式單調性,函式在[kπ-π/6,kπ+π/3]上單調增,在[kπ+π/3, 5π/6+kπ]上單調減,因此在[π/12,π/2]上值域為[根號3, 2]
3樓:波波
你的影象上最低點有沒有打錯?
如果沒錯的話 就是這樣的
∵相鄰兩個交點距離是π/2
∴1/4t=π/2 ∴t=2π
∴歐米伽=2π/2π=1
a=2將點m代入f(x)=2sin(x+fai)中得2sin(2/3pai+fai)=-2
你的最低點橫座標應該給錯了
已知f(x)xlnx,已知函式f(x) xlnx
1 g x lnx k x x 0 g x 1 x k x 2 1 x 1 k x x k x 2 當k 0 時,g x 0恆成立,即 g x 在定義域內遞增 當k 0時,g x 0,則有x k,因此g x 的遞增區間是 k,無窮 當g x 0時,則有00時的最小值在x e處取得,最小值f e f ...
已知函式y 已知函式y 1 x
設f x 1 x 3 函式的定義域是 0 0,1 對任意的x 0 0,f x 1 x 3 1 x 3 f x 由函式奇偶性定義,知道 函式是奇函式 2 對任意的x1 x2 0,設x10,x2 0 x1 3 0,x2 3 0,x1x2 0 x1 x2 x1x2 0 x2 x1 0 則f x1 f x2...
已知函式f x)x ax bx
已知函式f x x ax bx 5,曲線y f x 在點p 1,f 1 處的切線方程為y 3x 1 1 求a,b的值 2 求y f x 在 3,1 上的最大值。解 1 f 1 a b 6 4,故得a b 2.1 f x 3x 2ax b,f 1 3 2a b 3,故得2a b 0.2 2 1 得a ...