1 已知A C,AB CD,求證 AD CB 2 如圖,已知AF BD,CE BD,AF CE,AB CD,求證 AB CD

時間 2021-06-12 03:27:16

1樓:銀色月光

∠a=∠c ab∥cd ∠abc+∠c=180 ∠a+∠abc=180所以ad∥bc 所以abcd為平行四邊形ad=bc

有題意知,⊿abf.⊿dec為直角三角形,且af=ce ab=cd 所以⊿abf≌⊿dce.即∠abf=∠edc,所以ab∥cd

ae=bd   理由:abc dec為正三角形,ac=bc dc=ce  ac-dc=bc-ce  即ad=be 連結ae,bd  ∠a=∠b  ab=ab ad=be  所以⊿abe≌⊿abe  即ae=bd

ac=bc,ce=cd ,∠ace=∠bcd=120 ace≌bcd    即ae=bd           cf≠cg  df≠dc

bc=ac cd=ce acd+ace=ecb+ace    即ecb=acd即adc≌bec   ad=be

同4題第一問

ac=bc ce=cd  acb=bce=60  bce≌acd  ad=be

2樓:飛翔雨兒

第一題:

因為:rt三角形bcd中ce為斜邊中線

所以:ce=eb=1/2bd

所以:角ced=2角b=角a

所以:三角形cae等腰

所以:ac=ce=1/2bd

第二題:

因為:三角形abc bcd為等腰

所以:af垂直bc eg垂直cd

所以:aeg aef 為rt 三角形

所以:mf=mg=1/2ae

已知4,求證 1 tan1 tan

由公式tan tan tan 1 tan tan 把 4代入,得到 1 tan tan 1 tan tan 即 tan tan tan tan 1所以 1 tan 1 tan 1 tan tan tan tan 2得證。1 tan1 1 tan2 1 tan3 1 tan45 1 tan1 1 ta...

已知a,b,c R ,且a b c 1,求證

1.a 2 b 2 c 2 a b c 2 2 ab ac bc 1 2 ab ac bc 2 ab ac bc a 2 b 2 a 2 c 2 b 2 c 2 2 a 2 b 2 c 2 a 2 b 2 c 2 1 2 ab ac bc 1 2 a 2 b 2 c 2 a 2 b 2 c 2 1 ...

反證法 已知a1,b1 求證a b

證明 反設 a b 1 ab 1即 a b 1 ab 兩邊平方有 a b 2 1 ab 2即a 2 2ab b 2 1 2ab ab 2亦即a 2 b 2 ab 2 1 0即 a 2 1 1 b 2 0 而 a 1,b 1 故a 2 1 0,b 2 1 0 上式顯然不成立,故命題得證 若 a b 1...