已知ab 0,求證 a b 1的充要條件是a 3 b 3 a

時間 2021-08-14 06:11:23

1樓:匿名使用者

必要性:由a+b=1推出a³+b³+ab-a²-b²=0a³+b³+ab-a²-b²

=(a+b)(a²-ab+b²)-a²+ab-b²由a+b=1有上式=0

充分性:由a³+b³+ab-a²-b²=0推出a+b=1a³+b³+ab-a²-b²

=(a+b)(a²-ab+b²)-a²+ab-b²=(a²-ab+b²)(a+b-1)

=(a+b-1)[(a-b/2)²+3b²/4]=0因為ab≠0,所以a≠0,b≠0,所以(a-b/2)²+3b²/4>0

所以a+b-1=0,a+b=1

2樓:匿名使用者

a^3+b^3+ab-a^2-b^2

= a^3-a^2+b^3-b^2+ab

=a^2(a-1)+b^2(b-1)+ab=-a^2b-ab^2+ab

=ab(1-a-b)

因為a^3+b^3+ab-a^2-b^2=0,所以ab(1-a-b)=0,因為ab≠0,所以1-a-b=0,所以a+b=1

因為a+b=1,所以(a+b)^3=1,

所以a^3+3a^2b+3ab^2+b^3-1=0因為a^3+3a^2b+3ab^2+b^3-1= a^3+b^3+ab(3a+3b)-1=a^3+b^3+3ab-(a+b)^2

=a^3+b^3+3ab-a^2-2ab-b^2=a^3+b^3+ab-a^2-b^2

所以a^3+b^3+ab-a^2-b^2=0。

3樓:匿名使用者

a^3+b^3+ab-a^2-b^2=0

因式分解,得(a+b-1)(a^2+b^2-ab)=0由於a^2+b^2≥2ab≠ab,因ab≠0所以 a^3+b^3+ab-a^2-b^2=0等價於 a+b-1=0

a b 0求 b,已知1 a 1 b 1 a b 0求 b a a b

明月鬆 1 a 1 b 1 a b 0 1 a 1 b 1 a b 兩邊同乘以a b得 a b a a b b 1,即1 b a 1 a b 1 所以,b a a b 1 b a a b 1 1 a 1 b 1 a b a b a a b b 1 b a a b 1 兩邊平方得 b 2 a 2 2 ...

已知a0,b0且a b 1,則

原式 1 a 2 1 1 b 2 1 得 1 a 2b 2 1 a 2 1 b 2 1 1 a 2b 2 a 2 b 2 a 2b 2 1 1 a 2b 2 1 2ab a 2b 2 1 2 ab 1 a b 2 1 a 2 b 2 2ab,a 2 b 2 2ab 1 得到 ab 1 4 所以原式 ...

已知a0,B0 且a b 1,試求

進擊的yang叫獸 用a b乘2 a 3 b得3a b 2b a 5根據基本不等式a b大於等於2根號ab 5先不看 得3a b 2b a大於等於2根號6 基本不等式中的a看作3a b b看作2b a 然後不等式兩邊再 5 得 a b 2 a 3 b 這個式子就是3a b 2b a 5 大於等於2根...