1樓:匿名使用者
(1)與直線4x+y-2=0平行,k=-4,代入a得:y-2=-4(x-3),即 4x+y-14=0
(2)mn斜率=(2+5)/(1+1)=7/2,k=7/2,代入b得:y+3=7/2(x-2),即 7x-2y-20=0
(3)與直線2x+y-5=0垂直,k′=-2,k=1/2,代入c得:y=1/2(x-3),即 x-2y-3=0
2樓:匿名使用者
(1)y-2=-4(x-3)
(2)y+3=7/2(x-2)
(3)y=1/2(x-3).
利用點斜式y-y0=k(x-x0).關鍵求斜率.
3樓:唐蘊鐸冰綠
解:(1)設所求直線方程為4x+y+c=0…(3分)因為所求直線過點a(3,2)
所以4×3+2+c=0,
∴c=-14…(5分)
所以所求直線方程為4x+y-14=0…(6分)(2)由條件設所求直線方程為x-2y+c=0…(9分)因為所求直線過點b(3,0)
所以3+c=0,即c=-3…(11分)
所以所求直線方程為x-2y-3=0…(12分)
高數,求過點(0,2,4)且與兩平面x+2z=1和y-3z=2平行的直線方程 10
4樓:匿名使用者
平面來x+2z=1和y-3z=2的交線為
:(x-1)/(-2) = (y-2)/3 = (z-0)/1
所求直線自應該和這條直線平行
而它bai過du點(0,2,4),
所以,它的方zhi程為:(x-0)/(-2) = (y-2)/3 = (z-4)/1
從平面解析dao幾何的角度來看,平面上的直線就是由平面直角座標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,兩直線平行。
有無窮多解時,兩直線重合;只有一解時,兩直線相交於一點。常用直線向上方向與 x 軸正向的 夾角( 叫直線的傾斜角 )或該角的正切(稱直線的斜率)來表示平面上直線(對於x軸)的傾斜程度。
求對稱圖形
⑴點(x1,y1)關於點(x0,y0)對稱的點:(2x0-x1,2y0-y1)
⑵點(x0,y0)關於直線ax+by+c=0對稱的點:
( x0-2a(ax0+by0+c)/(a^2+b^2) ,y0-2b(ax0+by0+c)/(a^2+b^2) )
⑶直線y=kx+b關於點(x0,y0)對稱的直線:y-2y0=k(x-2x0)-b
⑷直線1關於不平行的直線2對稱:定點法、動點法、角平分線法
5樓:鍾雲浩
平面dux+2z=1和y-3z=2的交線為:
(x-1)/(-2) = (y-2)/3 = (z-0)/1所求直線zhi應該和這dao條直線平行
而它過點(0,2,4),
所以版,它的方程為:權(x-0)/(-2) = (y-2)/3 = (z-4)/1
求滿足下列條件的函式f x 的解析式
1 x t.x t 1,f t f 1 x 3x 2 3 t 1 2 3t 1所以f x 3x 1,思路就是把函式中的變數儘量簡化,這樣就可以算出結果了,下一題就順著這條思路自己做一下,希望我的回答你幫助你理解 1.設f x kx b,f f x k kx b b k 2x kb b 4x 4 k ...
已知二次函式f x)同時滿足下列條件 1,f 1 x f 1 x 2,f x 的最大值為15 3,f x 0的兩根的立方和為
解 設f x ax 2 bx c 因為要考慮到它的對稱軸和最大值問題,所以我們可以將其整理為 f x a x b 2a 2 c b 2 4a 由此可以看出,當x b 2a時,f x 取得最值 c b 2 4a x b 2a即為f x 的對稱軸 由條件1可知 f x 的對稱軸為x 1,所以 b 2a ...
1用sql語句建立滿足下列要求的資料庫
在sql server2005中用語句建立資料庫和表 具體示例如下 use master go if exists select from sysdatabases where name study 判斷study資料庫是否存在,如果是就進行刪除 drop database study go exe...