x根號x 2 1的不定積分,求1 x 根號x 2 1的不定積分

時間 2021-09-03 06:43:09

1樓:茲斬鞘

結果是 (1/2)[arcsinx + x√(1 - x²)] + c

x = sinθ,dx = cosθ dθ

= ∫ √(1 - sin²θ)(cosθ dθ) = ∫ cos²θ dθ

= ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + c

= (arcsinx)/2 + (sinθcosθ)/2 + c

= (arcsinx)/2 + (x√(1 - x²))/2 + c

= (1/2)[arcsinx + x√(1 - x²)] + c

擴充套件資料

求不定積分的方法:

第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)

分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)

2樓:滾雪球的祕密

1/x*根號x^2-1的不定積分是(1/2)[arcsinx + x√(1 - x²)] + c。

x = sinθbai,dx = cosθ dθ

∫ √(1 - x²) dx = ∫ √(1 - sin²θ)(cosθ dθ) = ∫ cos²θ dθ

= ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + c

= (arcsinx)/2 + (sinθcosθ)/2 + c

= (arcsinx)/2 + (x√(1 - x²))/2 + c

= (1/2)[arcsinx + x√(1 - x²)] + c

所以1/x*根號x^2-1的不定積分是(1/2)[arcsinx + x√(1 - x)] + c。

擴充套件資料:

1、分部積分法的形式

(1)利用有些函式經一次或二次求微分後不變的性質來進行分部積分。

例:∫e^x*sinxdx=∫sinxde^x=e^x*sinx-∫e^xdsinx=e^x*sinx-∫e^x*cosxdx

=e^x*sinx-∫cosxde^x=e^x*sinx-e^x*cosx+∫e^xdcosx

=e^x*sinx-e^x*cosx-∫e^x*sinxdx

則2∫e^x*sinxdx=e^x*sinx-e^x*cosx,可得

∫e^x*sinxdx=1/2e^x*(sinx-cosx)+c。

(2)通過對u(x)求微分後,du=u'dx中的u'比u更加簡潔。

例:∫xarctanxdx=∫arctanxd(1/2x^2)

=1/2x^2*arctanx-1/2∫x^2darctanx=1/2x^2*arctanx-1/2∫x^2/(1+x^2)dx

3樓:

結果是 (1/2)[arcsinx + x√(1 - x²)] + c

x = sinθ,dx = cosθ dθ∫ √(1 - x²) dx = ∫ √(1 - sin²θ)(cosθ dθ) = ∫ cos²θ dθ

= ∫ (1 + cos2θ)/2 dθ = θ/2 + (sin2θ)/4 + c

= (arcsinx)/2 + (sinθcosθ)/2 + c= (arcsinx)/2 + (x√(1 - x²))/2 + c= (1/2)[arcsinx + x√(1 - x²)] + c拓展資料這個根號下的不定積分,符合模型∫√a²-x² dx,本題中就是a=1的情況。根據sin²x+cos²x=1,用sinθ替換x,然後被積函式,被積變數都要改變。

要做出如圖所示的三角形,更容易加深理解。最後要把中間變數θ變回x

4樓:靈魂王子的心痛

你好!這幾種答案都是等價的,只是求的方法不同,導致表示方式不同而已

滿意請好評吧,謝謝~

1/(x+根號x^2-1)的不定積分

5樓:匿名使用者

^^|分子分母同乘以 [x-√(x^2-1)]i = ∫dx/[x+√(x^2-1)] = ∫[x-√(x^2-1)]dx = ∫xdx - ∫√(x^2-1)dx

= x^2/2 - (1/2)[ x√(x^2-1) + ln|x+√(x^2-1)| ] + c

6樓:匿名使用者

= ∫ d(x^2) / 2 / (1+ x^2)^1/2

= (1+ x^2)^1/2 + c

求不定積分dx/x根號下(x^2-1)

7樓:drar_迪麗熱巴

解題過程如下圖:

在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f ,即f ′ = f。

不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。

根據牛頓-萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來進行。這裡要注意不定積分與定積分之間的關係:定積分是一個數,而不定積分是一個表示式,它們僅僅是數學上有一個計算關係。

一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,一定存在定積分和不定積分;若在有限區間[a,b]上只有有限個間斷點且函式有界,則定積分存在;若有跳躍、可去、無窮間斷點,則原函式一定不存在,即不定積分一定不存在。

性質1、函式的和的不定積分等於各個函式的不定積分的和;即:設函式  及  的原函式存在。

2、求不定積分時,被積函式中的常數因子可以提到積分號外面來。即:設函式  的原函式存在,  非零常數。

8樓:曉龍修理

|^^結果為:-arcsin(1/|x|)+c

解題過程如下:

設t=1/x

則dx=-dt/t^2

∴原式=∫1/[x(x^2-1)^(1/2)]dx

=-∫(dt/t^2)*t|t|/(1-t^2)

=-sgn(t)∫dt/(1-t^2)^(1/2)

=-sgn(x)arcsint+c

=-arcsin(1/|x|)+c

求函式積分的方法:

如果一個函式f在某個區間上黎曼可積,並且在此區間上大於等於零。那麼它在這個區間上的積分也大於等於零。如果f勒貝格可積並且幾乎總是大於等於零,那麼它的勒貝格積分也大於等於零。

作為推論,如果兩個  上的可積函式f和g相比,f(幾乎)總是小於等於g,那麼f的(勒貝格)積分也小於等於g的(勒貝格)積分。

函式的積分表示了函式在某個區域上的整體性質,改變函式某點的取值不會改變它的積分值。對於黎曼可積的函式,改變有限個點的取值,其積分不變。

對於勒貝格可積的函式,某個測度為0的集合上的函式值改變,不會影響它的積分值。如果兩個函式幾乎處處相同,那麼它們的積分相同。如果對  中任意元素a,可積函式f在a上的積分總等於(大於等於)可積函式g在a上的積分,那麼f幾乎處處等於(大於等於)g。

如果在閉區間[a,b]上,無論怎樣進行取樣分割,只要它的子區間長度最大值足夠小,函式f的黎曼和都會趨向於一個確定的值s,那麼f在閉區間[a,b]上的黎曼積分存在,並且定義為黎曼和的極限s。

9樓:不是苦瓜是什麼

令x=sint

原式=∫

cost/(sint+cost) dt

=1/2 ∫(cost-sint)/(sint+cost) dt+1/2 ∫(cost+sint)/(sint+cost) dt

=1/2∫1/(sint+cost) d(sint+cost)+1/2∫dt

=1/2ln|sint+cost|+1/2t+c

t=arcsinx

cost=√1-x^2

所以原式=1/2ln|x+√1-x^2|+1/2arcsinx+c

不定積分的公式

1、∫ a dx = ax + c,a和c都是常數

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + c,其中a為常數且 a ≠ -1

3、∫ 1/x dx = ln|x| + c

4、∫ a^x dx = (1/lna)a^x + c,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + c

6、∫ cosx dx = sinx + c

7、∫ sinx dx = - cosx + c

8、∫ cotx dx = ln|sinx| + c = - ln|cscx| + c

9、∫ tanx dx = - ln|cosx| + c = ln|secx| + c

10、∫ secx dx =ln|cot(x/2)| + c = (1/2)ln|(1 + sinx)/(1 - sinx)| + c = - ln|secx - tanx| + c = ln|secx + tanx| + c

10樓:匿名使用者

都是正確的,原函式的表示不唯一

11樓:匿名使用者

arcsecx = arccos1/x = π/2 - arcsin1/x

所以 arcsecx +c 跟 -arcsin1/x +c 是一致的。。。

12樓:想要共享者

答案應為arccos1/x+c,這與你書上的答案不矛盾,帶入不同,它帶的是csct,但你的x=sect=1/cost,故t=arccos1/x而不是arc1/cosx

13樓:匿名使用者

=ln [x+(x^2+1)^(1/2)] + c

1/根號下(x^2+1)的不定積分

14樓:小小芝麻大大夢

1/根號下(x^2+1)的不定積分解答過程如下:

其中運用到了換元法,其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)。

擴充套件資料:

分部積分法

設函式和u,v具有連續導數,則d(uv)=udv+vdu。移項得到udv=d(uv)-vdu

兩邊積分,得分部積分公式

∫udv=uv-∫vdu。 ⑴

稱公式⑴為分部積分公式.如果積分∫vdu易於求出,則左端積分式隨之得到.

分部積分公式運用成敗的關鍵是恰當地選擇u,v

一般來說,u,v 選取的原則是:

1、積分容易者選為v。

2、求導簡單者選為u。

例子:∫inx dx中應設u=inx,v=x

分部積分法的實質是:將所求積分化為兩個積分之差,積分容易者先積分。實際上是兩次積分。

有理函式分為整式(即多項式)和分式(即兩個多項式的商),分式分為真分式和假分式,而假分式經過多項式除法可以轉化成一個整式和一個真分式的和.可見問題轉化為計算真分式的積分.

可以證明,任何真分式總能分解為部分分式之和。

常用積分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

不定積分x 5根號下1 x,不定積分x 5 根號下1 x

小小芝麻大大夢 x 1 x dx x 2x 4 1 x c。c為常數。解 令x t x 1 x dx x 1 x d x t 1 t dt t 1 1 1 t dt t 1 1 1 t dt t t 1 t c x x 1 x c x 2x 4 1 x c 擴充套件資料 分部積分 uv u v uv...

x 1 x 2的不定積分,1 x 1 x 2的不定積分

分開嘛左邊是lnx,右邊令x sint,則 1 x 2dt cost 2dt cos2t 1 2dt 所以1 x 1 x 2的不定積分是lnx sin2t 2 x 2 c c為常數 令a 1即可,原式 1 2 arcsinx 1 2 ln x 1 x c 左邊是lnx,右邊令x sint,則 1 x...

x 根號(1 x 2 dx不定積分過程

假面 具體回答如下 ln x 1 x 2 dx xln x 1 x 2 xdln x 1 x 2 xln x 1 x 2 x 1 x 2 dx xln x 1 x 2 1 3 1 x 2 3 c 不定積分的意義 一個函式,可以存在不定積分,而不存在定積分,也可以存在定積分,而沒有不定積分。連續函式,...