1樓:小小芝麻大大夢
∫xe^(-x)dx=-e^(-x)(x+1)+c。c為積分常數。
解答過程如下:
∫xe^(-x)dx
=-∫xde^(-x)
=-xe^(-x)+∫e^(-x)dx
=-xe^(-x)-e^(-x)+c
=-e^(-x)(x+1)+c
擴充套件資料:分部積分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
兩邊積分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx
即:∫ u'v dx = uv - ∫ uv' d,這就是分部積分公式
也可簡寫為:∫ v du = uv - ∫ u dv常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c
2樓:匿名使用者
如上,請採納,分部積分法。
3樓:匿名使用者
原式=-xe^(-x)+∫e^(-x)dx
=-xe^(-x)-e^(-x)+c
e的負x次冪 原函式是什麼
4樓:我是一個麻瓜啊
e的負x次冪的原函式: - e^(-x) +c。c為常數。
解答過程如下:
求e^(-x)的原函式,就是對e^(-x)不定積分。
∫e^(-x)dx
= - ∫ e^(-x) d(-x)
= - e^(-x) +c
擴充套件資料:常用積分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c9)∫1/(sinx)^2dx=-cotx+c10)∫1/√(1-x^2) dx=arcsinx+c11)∫1/(1+x^2)dx=arctanx+c求不定積分的方法:
第一類換元其實就是一種拼湊,利用f'(x)dx=df(x);而前面的剩下的正好是關於f(x)的函式,再把f(x)看為一個整體,求出最終的結果。(用換元法說,就是把f(x)換為t,再換回來)。
分部積分,就那固定的幾種型別,無非就是三角函式乘上x,或者指數函式、對數函式乘上一個x這類的,記憶方法是把其中一部分利用上面提到的f『(x)dx=df(x)變形,再用∫xdf(x)=f(x)x-∫f(x)dx這樣的公式,當然x可以換成其他g(x)。
5樓:靈魂王子的心痛
你好!∫e^(-x)dx
= - ∫ e^(-x) d(-x)
= - e^(-x) +c
c為常數
求不定積分 x的四次方乘以e的負x平方 ,求大神指點~~!!
6樓:劉來福務未
這個不定積分的原函式不能用初等函式表示的
可以化為貝塔回函式形式,
∫(x^答4)e^(-x^2)dx=∫(1/2)(x^3)e^(-x^2)dx^2作變數替換
t=x^2得∫(1/2)[t^(3/2)]e^(-t)dt如果是求定積分那麼是可以求具體數值的,但這裡是不定積分,就沒有初等的函式表示
不定積分x 2 x 2 3x 2 dx
原式 不定積分 x 2 x 2 3x 2 dx 不定積分 x 2 3x 2 3x 2 x 2 3x 2 dx 不定積分1dx 不定積分 3 x 1 1 x 2 x 1 dx x 不定積分3 x 2 dx 不定積分1 x 2 x 1 dx x 3ln x 2 ln x 2 x 1 c x ln x 2...
x 2x 2)dx的不定積分!謝謝
x證 1 x 2x 2 dx的不定積分詳細解答如下 拓展資料 在微積分中,一個函式f 的不定積分,或原函式,或反導數,是一個導數等於f 的函式 f 即f f。不定積分和定積分間的關係由微積分基本定理確定。其中f是f的不定積分。根據牛頓 萊布尼茨公式,許多函式的定積分的計算就可以簡便地通過求不定積分來...
求不定積分, 2x 1x 2 1 2dx
土豪與他人 2x 1 x 2 dx 1 1 x 2 dx 2 ln 1 x 2 c 化工 湊微分 弄出d x 1 計算不定積分 x 1 2 x 2 1 2dx 我是一個麻瓜啊 x 1 bai2 x 2 1 2dx arctanx 1 x du2 1 c。c為積分zhi常數。解答過dao程如下 x 1...